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Time-dependent mode structure for Lyapunov vectors as a collective movement
in quasi-one-dimensional systems

Tooru Taniguchi and Gary P. Morriss
School of Physics, University of New South Wales, Sydney, New South Wales 2052, Australia

(Received 4 June 2004; published 19 January 2005

The time-dependent mode structure of the Lyapunov vectors associated with the stepwise structure of the
Lyapunov spectra and its relation to the momentum autocorrelation function are discussed in quasi-one-
dimensional many-hard-disk systems. We obtain the complete mode stru@tyegminov modesfor all
components of the Lyapunov vectors, including the longitudinal and transverse components of both the spatial
and momentum parts, and their phase relations. These mode structures are suggested by the form of the
Lyapunov vectors for the zero-Lyapunov exponents. The spatial node structures of these modes are explained
by the reflection properties of the hard walls used in the models. Our main result is that the largest time-
oscillating period of the Lyapunov modes is twice as long as the time-oscillating period of the longitudinal
momentum autocorrelation function. This relation is satisfied irrespective of the number of particles and the
boundary conditions. A simple explanation for this relation is given based on the form of the time-dependent
Lyapunov mode.
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[. INTRODUCTION structures in the associated Lyapunov vectts Lyapunov
modes, which offer a useful tool to understand the origin of
Statistical mechanics based on dynamical instability hashe stepwise structure of the Lyapunov spectriiii—20.
drawn considerable attention in recent years. The dynamicd@riginally, these structures were observed in many-hard-disk
instability is described as a rapid separation of two nearbyystems, but very recently numerical evidence for the
trajectories, the so-called Lyapunov vector, and causes a lodyapunov modes was reported for many-particle systems
of memory or unpredictability in the dynamical system. Thewith soft-core particle interactior{21,22. Some theoretical
exponential rate of expansion or contraction of the magni@rguments have been proposed to explain this phenomenon,
tude of the Lyapunov vector is called the Lyapunov expo-for example, using random matrix theof#3,24, kinetic
nent, and its positivity, at least for the largest exponent, is 41€ory[25-27, and periodic orbit theory15], etc.
well known indicator of chaos. Many efforts have been de- The key to understanding the Lyapunov steps and modes
voted to connect the dynamical instability with statistical!S in the zero-Lyapunov exponents ar(1nc>i the'(f,) ass(gmated
properties, such as transport coefficiefits?]. Some works Lyap(%lov (nv)ectczrr])s. U(%lng the notatiofl™”=(5q™", 5p™)
have concentrated on specific effects of the dynamical insta= (% »&d, P, ", dp,") for the Lyapunov vector corre-
bility in many-particle systems. Information about the dy- SPonding to Lyapunov exponent”, the Lyapunov vectors
namical instability in many-particle systems is given by thec0rresponding to the six zero-Lyapunov exponents of a two-
complete set of Lyapunov exponenfthe Lyapunov spec- dimensional system dfl hard particles in periodic boundary
trum) and their associated Lyapunov vectors. Here, we intropgggjs't'onsvceacqo?g Wrnl\ltfalrllz(alsollrg)eg)r comb|\||rlzi=1/t2|(oonsl %f g)]e Six
duce the Lyapunov spectrum as the ordered set of thg i, _1/2 T L d
Lyapunov exponenta™ n=1,2,...,2IN, whereA=\? a (0,0,1,0, N"7%0,0,0,1), Il (Px,Py,0,0), ~ an
=-.-=\@N jn d-dimensional systems. The structure of the!pI (0,0,_|0x,|0y)_. Here0 is anN-dimensional null vectorl
Lyapunov spectra has been of much interest in many-particl$ @1 N-dimensional vector with all components equal to 1,
systems and some of the results obtained have been the cddP= (Px,Py) is the momentum vector with its compo-
jugate pairing rule for the Lyapunov spectra of thermostated'€"tPx @ndy componentp,. Here, the firssecond basis
systems[3-6], the localized behavior of Lyapunov vectors vgctor is ass_omqted with the translanonql invariance inthe
[7-11], and the thermodynamic limit of Lyapunov spectra dlrect|on(y direction), the third(fourth) basis vector with the
[12-15. conservation of the( componem(y cqmpone@t of the tota}l
The stepwise structure of the Lyapunov spectra is one gfnomentum, the f|f'thl b§13|s vector with the 'glme—translatlonal
such chaotic properties of many-particle systems, which waiivariance (deterministic nature of the orbjtand the last
found recently[16]. This stepwise structure appears in thePasis vector with the energy conservatidd]. This
Lyapunov exponents with smallest absolute value, and th@“e("’r})nS that(nghe S|x(ns)ets of (tnr;e Lya%mov ve(;:)tor components
dynamical structure of these Lyapunov exponents should re{ﬁxj( }» {‘Wj };, {mxj Y {5pyj }J’ {"Xj /pXi’éyj Ipyitj, and
flect slow and global behavior of the macroscopic system{ r-])/pxj,épi,? Ipy}j (where @(jn) is the jth component of
Therefore, clarification of the stepwise structure of Lyapunov&qf(')ﬂ, etc) can have equal components independent of the
spectra(Lyapunov stepsis expected to make a bridge be- particle indexj for the zero-Lyapunov exponent modes.
tween the macroscopic statistical theory and microscopic We regard the degeneracy of the zero-Lyapunov expo-
chaotic dynamics. The Lyapunov steps accompany wavelikaents and the structure of the corresponding Lyapunov vec-
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tors as the zeroth Lyapunov step and mode. This scenario The purposes of this paper are twofold. First we calculate
was proposed first in Ref18], and was also discussed very all components of the Lyapunov vectors associated with the
recently in Ref[20]. First of all, the Lyapunov steps for the stepwise structure of the Lyapunov spectrum. They include
rectangular two-dimensional system with periodic boundarythe longitudinal and transverse components of both the spa-
conditions consist of two-point steps and four-point stepdial and momentum parts of the Lyapunov vectors. We dem-
[17,18, namely, the number of Lyapunov exponents for oneonstrate the wavelike structures in the components of the
set of Lyapunov steps is six, which is equal to the number ot-yapunov vectors, and specify their phase relations. These
the zero-Lyapunov exponents. It is also known that the stepesults support the above explanation for the origin of the
wise structure of Lyapunov spectra is changed by violatind-yapunov steps and modes based on the zero-Lyapunov ex-
the spatial translational invariance and the total momentun@Onents and the associated Lyapunov vectors. Spatial node
conservation, which also change the number of zerostructures of the_s_e Lyapunov modes are explained in terms of
Lyapunov exponent§18]. As a second point, some mode boundary conditions. It is emphasized that some of the

structures were observed in some of the above Lyapunoly@Punov modes show time-oscillating behaviors, and par-
vector components, which should be constant in Zeroycle number dependence in their time-oscillating periods.

-~ The second purpose of this paper is to discuss the connection
Lyapunov exponents. For exarm)ole, a mode structure n Metween the time oscillation of the Lyapunov modes and the
Lyapunov vector componendy;  (the transverse spatial

. : . momentum autocorrelation functions. It is shown that the
translational invariance Lyapunov mgds well known[17]. largest time-oscillating period of the Lyapunov modes is

This mode is stationary in time, and appears in one of thgyice as long as that for a momentum autocorrelation func-
two types of the Lyapunov %t)eps. Refererid8] showed (jon This gives some evidence to connect the Lyapunov
another mode structure idy; /py; (the transverse time modes, a tangent space property, to the autocorrelation func-
translational Lyapunov modeThis mode depends on time, tion, which is a phase-space property that is accessible ex-
and appears in other types of the Lyapunov steps. Thesgerimentally.
Lyapunov modes are enough to categorize all the Lyapunov As a simple many-particle chaotic model, in this paper we
steps. Referencdd 7,19 also claim a moving mode struc- (ge a quasi-one-dimensional many-hard-disk sy$fenig.
ture in ox". This model allows fast numerical calculation of the
However, there is not enough evidence yet to confirm the yapunov exponents and vectors, and shows clear Lyapunov
above scenario for the Lyapunov steps and modes. For exteps and modes. These features of this model are advanta-
ample, the mode structure in the momentum part ofgeous to the aim of this paper, because in general the numeri-
Lyapunov vectors has not been reported explicitly. Besidesgal calculation of the Lyapunov spectrum and vectors is very
the phase relations of different modes, for example theime-consuming, and it is often difficult to get clear
modes inéy}“)/pyj and éXJ(”), have not been discussed. An- Lyapunov mode structures, particularly for time-dependent
other important problem is the time scale specified by a timetyapunov modes. Besides, if the above picture of the
dependent Lyapunov mode, like the time oscillation for theLyapunov steps and modes based on universal properties
mode in by(”)/pyj. The time-oscillating period is usually such as the translational invariances and the conservation
much longer than the mean free time of the system, and laws can be justified, then such a simple model should be
should correspond to a collective movement, but quantitativeufficient to convince us of their origin. This system also
evidence for it has not been shown clearly. exhibits a clear oscillatory behavior in the longitudinal mo-
As an indicator for collective movements of many- mentum autocorrelation function. Another useful technique
particle systems, we can use the momentum autocorrelatidie get clear Lyapunov steps and modes is to use hard-wall
functions, where collective movement may appear as a timésoundary conditions. Although hard-wall boundary condi-
oscillation behaviof28], as observed in many macroscopic tions destroy the spatial translational invariance and the total
models[29-33. The autocorrelation functions are accessiblemomentum conservation, and lead to different structure in
experimentally using neutron and light scattering techniquethe Lyapunov spectrum compared to periodic boundary con-
[33—-34. An essential aspect of autocorrelation functions isditions, it has been shown that there is a simple relation
their role as response functions for the system. For exampldetween the observed Lyapunov steps and modes and differ-
linear-response theory connects the time integral of the aut@nt boundary conditiongl8]. Specifically, we use a quasi-
correlation function with a transport coefficief87]. How-  one-dimensional system with hard-wall boundary conditions
ever, it should be emphasized that the autocorrelation fundn the longitudinal direction and periodic boundary condi-
tions themselves provide much more detailed informatiortions in the transverse direction. Usually, the hard-wall
about the system. Linear-response theory requires the timéoundary conditions make numerical calculation slower
integral and the thermodynamic limit of the autocorrelationcompared to periodic boundary conditions, but in our system
function to calculate transport coefficients, and in this pro-only the two particles at each end of the system collide with
cess information about short time scales and finite-size efthe hard walls, so the effect is small.
fects is lost. For instance, the time oscillation of the autocor- The outline of this paper is as follows. In Sec. Il, the
relation functions is one of the finite-size effects, which quasi-one-dimensional system is introduced. In Sec. Ill, we
linear-response theory does not treat. Information on shodiscuss the Lyapunov steps and modes. In Sec. IV, the mo-
time scales and finite-size effects in the autocorrelation funcmentum autocorrelation functions and their relation with the
tions also plays an important role in the generalized hydrotyapunov modes are discussed. Finally, we give some con-
dynamics[38] and generalized Fokker-Planck equatiga]. clusion and remarks in Sec. V.
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2R the particle sequence corresponds to the particle position.
" This leads to a much simpler representation of Lyapunov

@ @ O O O @ 7y modes, which must be investigated as functions of spatial
}‘ Lx

—— coordinates and time. One may also notice that in the quasi-
one-dimensional system, the system size is proportional to
the particle numbeN, while for the square system it is pro-

FIG. 1. A schematic illustration of the quasi-one-dimensionalportiona| to VN. This implies that in the quasi-one-
system. The system shape is so narrow that particles always remaffimensional system, many-particle effects are more evident
in the same order. Herg,(L,) is the lengthwidth) of the system in  than for the fully two-dimensional systems with the same
the longitudinal(transversgdirection, andR is the radius of a par-  nymper of particles.

ticle. The solid lines represent hard-wall boundary conditigihs Another important point in the quasi-one-dimensional

and the dashed lines represent periodic boundary conditl®ns  gystem is the effect of boundary conditions. Different from

representing the boundary conditiG,P). The particles are num-  the square system, in which the boundary length is propor-

N
i

beredl,2,... N from the left to the right. tional to the square root of the system size, in the quasi-one-
dimensional system the boundary length is proportional to
Il. QUASI-ONE-DIMENSIONAL SYSTEM the system size itself, therefore we cannot neglect its effect

even in the thermodynamic limit. Actually, R¢fL8] showed

The model considered in this paper is a quasi-onethat the Lyapunov steps and modes depend strongly on
dimensional many-hard-disk system. It is a two-dimensionaboundary conditions. Boundary conditions change not only
rectangular system consisting of many hard disks with thehe structure of Lyapunov steps and modes, but also the
width of the system so narrow that the disk positions are notlearness of Lyapunov mode structure. For example, a sys-
exchanged, thus the disks can be numbered from left to rightem with purely hard-wall boundary conditions has no sta-
We assume that the massand the radiuf of each disk is  tionary Lyapunov mode and its corresponding Lyapunov
the same. In this case, the quasi-one-dimensional system hsteps and shows much clearer time-oscillating Lyapunov
a width L, that satisfies the conditiorRaL,<4R. Figure 1  modes, compared to a system with periodic boundary condi-
gives a schematic illustration of the quasi-one-dimensionafions. Roughly speaking, hard-wall boundary conditions pin
system with the particles number#&d2, ... N (N is the par-  the positions of the nodes and thus lead to clearer Lyapunov
ticle numbey from the left to right. modes. On the other hand, the numerical calculation with the

Originally, the quasi-one-dimensional many-hard-diskhard-wall boundary conditions is more time-consuming. This
system was introduced as a system to easily and clearly oldisadvantage is significant in the quasi-one-dimensional sys-
serve the stepwise structure of the Lyapunov spectrum angm with purely hard-wall boundary conditions. As another
the corresponding wavelike structure of Lyapunov vectorslisadvantage of the system with purely hard-wall boundary
[18]. Numerical observation of the Lyapunov steps andconditions, we cannot investigate the stationary Lyapunov
modes is very time-consuming, and even at present thmode due to spatial translational invariance. As an optimal
Lyapunov spectrum is limited to about 1000 particlég].  system, in this paper we mostly consider a quasi-one-
Therefore, it is valuable to explore fast and efficient ways todimensional system with hard-wall boundary conditions in
calculate them numerically. It is well known that the rectan-the longitudinal direction and periodic boundary conditions
gular system has a wider stepwise region than a square syigrthe transverse direction. We use the notafidrP) for this
tem with the same area and number of particles. This quasboundary condition throughout this paper. In Fig. 1, we rep-
one-dimensional system is the most rectangular tworesent the boundary conditiofH,P) as different types of
dimensional system possible. Refererj@8] demonstrated lines on the boundaries: the bold solid lines signify hard-wall
that in the quasi-one-dimensional system we can clearly obboundary conditions and the broken lines signify periodic
serve the structure of the Lyapunov modes. It is known thaboundary conditions.
there are two kinds of Lyapunov modes: stationary modes Although the quasi-one-dimensional many-hard-disk sys-
and time-dependent modes. The stationary Lyapunov modeem with the boundary conditiofH,P) may be artificially
are most easily observed because of their stable structure, butroduced to investigate Lyapunov steps and modes in a fast
generally the observation of the time-dependent Lyapunowand effective way, it is essential to note that the results from
modes is much harder because of large fluctuations in thethis system can be used to predict Lyapunov steps and modes
structure and their intrinsic time dependence. The quasi-onéa more general systems, such as a fully two-dimensional
dimensional system is the first system in which time-system with purely periodic boundary conditions. Details of
oscillating Lyapunov modes were demonstrai8]. the relation of the Lyapunov steps and modes in quasi-one-

Another advantage of the quasi-one-dimensional systerdimensional systems with different boundary conditions
is that the particle interactions in this system are restricted tavere given in Ref[18]. For example, the step widths of the
nearest-neighbor particles only, so we need much less effotlyapunov spectrunfthe spatial and time periods of the cor-
to find colliding particle pairs numerically compared with the responding Lyapunov modei the system with the bound-
fully two-dimensional system in which each particle can col-ary condition(H,P) are halvegtwice) the ones in the system
lide with any other particle. This leads to faster numericalwith the purely periodic boundary conditiokB,P. It is also
calculation of the system dynamics. Besides, in this systenknown that the structure of Lyapunov steps for the quasi-
particle movement in the narrow direction is suppressedone-dimensional system is the same as the fully two-
compared to the longitudinal direction, and roughly speakinglimensional rectangular system.
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FIG. 2. Stepwise structure of the Lyapunov spectrum normal-
ized by the largest Lyapunov exponent for the quasi-one-
dimensional system wittN=100 and(H,P) boundary conditions.
The white-filled (black-filled circles correspond to the stational
(time-oscillating Lyapunov modes. Inset: The full spectrum of the
positive branch of the normalized Lyapunov spectrum. Note that the
step structure dissolves at about exponent number 160 so this effect
is only seen in the slowest modes.

As we discussed above, the main reason to use the quasi-
one-dimensional system with the boundary conditibiP)
is to get clear Lyapunov steps and modes in a fast numerical
calculation. On the other hand, these advantages may not
assist the calculation of the momentum autocorrelation func-
tion. In the quasi-one-dimensional system, collisions of a
particle are restricted to its two nearest-neighbor particles
only, so it may be supposed that specific types of collisions
like the “backscattering effect” play an important role. The FIG. 3. (Color onling Local time averages oféx;); and(dy;);
backscattering effect, which comes from a reversal of thdor the first two-point stefiexponent 198in (a), and for the second
velocity of a particle by a collision with the nearest-neighbortwo-point steplexponent 195in (b). These are shown as functions
partide’ can lead to a negative region of the momentum awef the collision numbem, and the normalized local time average
tocorrelation function. One may also suppose that in théX/Lx of the x component of thgth particles positior{with the
quasi-one-dimensional system, a collective motion may b&ystem lengtiL,). The corresponding Lyapunov exponentd®
enhanced, because the movement of particles in the narro@pd A are indicated by arrows in Fig. 2. On the base of each
direction is very restricted. This may lead to a clear timegraph are the contogr plots of t_he_transverse Lyapunov mt_)des at the
oscillation of the momentum autocorrelation function, as will 've!s ~0-0&dotted lines, 0 (solid lines, and +0.08broken lines.

be observed in Sec. IV. It may also be noted that boundang Ref.[18], and here we complete this presentation. Some of
condition effects on the momentum autocorrelation functionhe discussions omitted in Ref18] were the relation be-
are not well known. Because we need to know about them_tﬂ/\/een the time-oscillating Lyapunov mode proportional to
be able to guess the relation between the autocorrelatiofhe momentum and the longitudinal Lyapunov modes, the
functions and Lyapunov modes in different boundary condi{yapunov modes for the momentum parts of Lyapunov vec-
tions, we will discuss the boundary condition effects on thetors, and the particle number dependence of the time-
momentum autocorrelation function briefly in Sec. IV C.  oscillating period of the Lyapunov modes.

In this paper, we use units where the massand the For a numerical calculation of the Lyapunov spectrum and
particle radiusR are 1, and the total enerdyis N (except in  the Lyapunov vectors, we used the _numerical algorithm de-
Sec. D). For the numerical calculations, the systemVveloped by Benettiret al.[40] and Shimadat al. [41] (also
lengths are chosen ds=1.5NL,+2R andL,=2R(1+10°)  see Refs[42,43). This algorithm is characterized by regular
for the quasi-one-dimensional system with the boundary Conieorthogonal|ztat|0nsh'arr11q (rjenormf?hzatlog Oft, tlhe S”‘?t_ of
dition (H,P). The density ig9=N#R?/V, whereV is the vol- yapunoy vectors, Which IS done atter Sach particie cotision.

iol h f th ic| Usually the Lyapunov steps and modes appear after a long
ume accessible to the center of the particle. trajectory calculation, and we typically calculated trajectories

of more than 5< 10° particle collisions to get the Lyapunov
Ill. LYAPUNOV STEPS AND MODES spectra and vectors. Typically, the zero-Lyapunov exponents
converge first, followed by the next smallest exponents, with
In this section, we discuss the Lyapunov steps and modese higher steps being last to converge.
in the quasi-one-dimensional system with boundary condi- The main purpose of this section is to investigate the
tion (H,P). Part of these results have already been presenteiime-oscillating structures in the longitudinal momentum
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FIG. 4. (Color onling Local time averages gioX;)., X/ Pxju (Y, and(dy;/py;) for the Lyapunov modes corresponding to the first
exponent of the first two-point step1°?), as functions of the collision number and the normalized local time average)/ L, of the x
component of the position of thigh particle. The base of each graph is a contour plot of the three-dimensional graph at the levels —0.08
(dotted line$, O (solid lineg, and +0.08(broken lines.

proportional Lyapunov modes. We present results for 100ticles with (H,P) boundary condition. The entire positive
particle systems, and in such small systems the structure &franch of the Lyapunov spectrum is shown in the inset to this
the Lyapunov modes has large fluctuations in space and tinfegure. In a Hamiltonian system, the negative branch of the
which can obscure the appearance of clear mode structurdsyapunov spectrum takes the same absolute value as the
Another problem appears for the Lyapunov modes that arpositive branch of the Lyapunov spectrum from the conju-
proportional to the momentum. We investigate these modegate pairing ruleA\N-""D=—\(" n=1 2, ... N [44], so

by calculating such quantities a&}”)/pxj, which should they are omitted in Fig. 2.

show a time-oscillating wavelike structure, if the Lyapunov ~ This system has four zero-Lyapunov exponents, which
vector components have modes proportional to momentuntome from the conservation of thecomponent of the total
However, fluctuations of this quantity may be enhanced irmomentum and the center of mass, energy conservation, and
cases when the momentum component is close to zero. The deterministic nature of the orbit. Note that theompo-
overcome these technical problems, and to visualize thigsent of the total momentum and the center of mass are not
structure as clearly as possible, we take a local time averagg@nserved, because of the hard-wall boundary condition in
of the Lyapunov modes. More concretely, for the Lyapunovthe x direction. Exponents number 199, 200, 201, and 202
vector componentsX"” and dy!", we take their arithmetic are zero in Fig. 2. o
average over I8 collisions using data just after collisions, ~ The stepwise structure of the Lyapunov spectrum in this
and plot them as functions of the same local time average dfystem consists of one- and two-point steps. These two kinds
x; and the first collision number of time interval. For modes©f Lyapunov steps accompany different mode structures in
in the quanuneséX}“)/pXj, .éy}n)/pyj, ép;r})/pxj’ and 6p§,'})/pyj, the Lyapunov vectors: one is the stationary modes, as dis-
we take the same local time average, except that if the absgUssed in Sec. lll B, and the other is time-oscillating modes,
lute value|p, (|py;]) is less than 10% of the averaged mo- @S discussed in Sec. Il C. Here we count the se()quence of
mentum amplitude 2mE/N, then we exclude the data at that Lyapunov steps from the zero-Lyapunov exponat®? and

. . - (199 (198 i -NOi (197) (196)
time from the local time average. We use the notatio, ~ »  SON " is the first ((1’;‘5)6 -point step, " and\'™™ are
for such a local time average. the first two-point stepi is the second one-point step,

and\1®¥ and\ 199 are the second two-point step, see Fig. 2.

A. Lyapunov steps

Figure 2 is the stepwise structure of the Lyapunov spec- B. Stationary Lyapunov modes

trum normalized by the largest Lyapunov exponent for the First we discuss the Lyapunov mode corresponding to the
guasi-one-dimensional many-hard-disk system of 100 parfirst and second one-point steps in Fig. 2. Figure 3 shows the

016218-5



T. TANIGUCHI AND G. P. MORRISS PHYSICAL REVIEW E/1, 016218(2005

(a) < dx/™” > o

(b) < dxj19 >,

e )

537500 557500
n¢

£)
U

(¥ A-_\
v l

o A

537500 547500 557500 567500 537500 547500 557500
ny n

FIG. 5. (Color onling Contour plots of the local time averages(ak;), {&;/ pxju (8Y;/pyj, for the first two-point stepp19? (a,c,8
and\199 (b,d,f], as functions of the collision numbef and the normalized local time average)/ L of the position of thgth particle
in the same collision number intenf@35200, 56960D The dotted lines, the solid lines, and the broken lines are contour lines at the levels
-0.08, 0, and +0.08, respectively.

graph of the Lyapunov vector components corresponding to In Fig. 3, we recognize spatial wavelike structures in the
the first and second one-point step as a function of the cokransverse components stjf”)>t for n=198 and 195, which
lision numbern, and the normalized local time average gre stationary in timéat least in a time interval of more than
(Xj)/Ly of the x component of the particle position. Here, 45 13 collisions as shown in this figureThese wavelike

Fig. 3@ is for the local time averages dféxﬁlga% and  structures are very nicely fitted by sinusoidal functi¢hg].
<ay}198>>t for the first one-point step*%¥, and Fig. 3b) isa  Note that the numerical algorithm ensures that the Lyapunov
similar graph for the second one-point stéf?”. These one- vectors are normalized, so that the amplitudes of any com-
point steps are indicated by arrows in Fig. 2. Both graphgonent of the Lyapunov vector must be less than 1. It should
have the same collision number intera24000,569600 be emphasized that antinodes in the modes appear at the end
On the base of each of Figs(aB and 3b), we give contour of the system in the direction. By comparison, the ampli-
plots of the transversal modéay(**”), and(sy|**°),, respec-  tudes of the longitudinal components "), for n=198
tively, in which the dotted lines, the solid lines, and the bro-and 195 are extremely small. These observations suggest that
ken lines correspond to the levels —0.08, 0, and +0.08, rethe Lyapunov mode corresponding to théh one-point
spectively. Lyapunov step is approximately represented by

016218-6



TIME-DEPENDENT MODE STRUCTURE FOR LYAPUNOV.. PHYSICAL REVIEW E 71, 016218(2009

@(guw 0 k time-oscillating wavelike structure in Fig(l9) is the same as
(éygﬂ(k))> = ak(1>C05<L—ij>, (1) thatin Fig. 4d). In Fig. 4(c), it is rather difficult to recognize

] any structure. Roughly speaking, it is just random fluctua-
where e is a constant angi(k) is the Lyapunov index cor- tions, but the amplitude of such fluctuations in the middle of
responding to théth one-point step of the Lyapunov spec- the system is small compared to the region at the end of the
trum. Here we take the origin of the component of the system. However, such small-amplitude fluctuations are re-
spatial coordinate to bg=0, so that an ambiguity in spatial quired for consistency with Fig.(d), namely, the fact that in

phase can be removed in E@). this region the value oby|**"/p,; is small, so the value of
é}/}lw’ itself should be small with an almost position-
C. Time-oscillating Lyapunov modes independent momentur;.

Now we discuss the remaining Lyapunov modes, which Next we discuss the phase relations for the Lyapunov
correspond to the two-point steps of the Lyapunov spectrummnodes of the first two-point steps, corresponding to expo-
Figure 4 shows the graphs of the local time averages ofientsA*% and\1%? (the black-filled circles with brace un-
(XM, (X" Ipyghy, (Y™, and(8y**”/py)), as func-  demeath in Fig.  Figure 5 shows the contour plots of the
tions of the collision numben, and normalized local time- local time averages ofdX;), (8X;/ Py, (dY;/pyp, and for
averaged positiofx;),/L, of the jth particle. The number of A199 and\9” as functions of the collision numbe and
particles isN=100, and the four graphs are for the samethe normalized local time average)/L, of the position of
collision number intervah, e [535200,56960D These cor- the jth particle for a 100-particle system. The six graphs in
respond to the first exponent of the first two-point step, exFig. 5 have the same collision number interf&85200,

ponent 197. 569600, and Figs. Ba), 5(c), and %e) correspond to Figs.
We can easily recognize spatial wavelike structures wittf(@), 4(b), and 4d)
time oscillations in Figs. @) and 4d). In Fig. 4a), the lon- Figure 5 shows that the two Lyapunov exponents for the

gitudinal Lyapunov vector componeﬂszflgn)t has nodes at Same two-point step have the same structure of Lyapunov
the ends of the quasi-one-dimensional system, and the wav810des, but they are orthogonal in time, namely, nodal lines
length is given by R,. On the other hand, in Fig.(d), the of the Lyapunov modes (‘:_OfreSpondlng;f&;tge exponétit’
transverse Lyapunov vector componé&ﬂ}lgn/pij has an- gorrespond to anthodal lines of expon . We z(ag)so no-
tinodes at the end of the system and has a node at the middi&®® tha}nghe nodal_ Iln_es of .the Lyapunov ”_‘0de$fmj /pxi>t_
although its wavelength is given by.as for the longitudi- and{dy;"/py;) coincide with each other in space and time
nal mode of Fig. 4). (n=197,196, on the other hand the Lyapunov modes in
There is also a time-oscillating wavelike structure in the<¢5><f">>t atnd(bxfn)/pxj-)t are orthogonal in space and time at
longitudinal Lyapunov vector componemb)(flgnlpxj)t, as the same Lyapunov index.
shown in Fig. 4b). This structure is different from the one  The above discussions based on Figs. 4 atah8l similar
shown in Fig. 4a) associated with the same longitudinal observations of Lyapunov modes in the other two-point steps
Lyapunov vector componerdx'*®”. It has antinodes at the Of the Lyapunov spectruimlead to the conjecture that the
ends of the system, and has a node in the middle. Its wavepatial part of Lyapunov vector componenﬁx}”(k)) and
length is 2.,. These characteristics suggest that although‘zy}”(k)‘l) corresponding to the Lyapunov exponents oflktie
there are large fluctuations in the middle of the system, théwo-point step are approximately expressed as

)l ol el ).

= A -+ A L] Tya ,

éy](“k)) K By, L) Toa t T Pk Ko L, Tiya t T Pk

(20 ) =P Jeod 7 o 2 ) i o 2 ) X
] 0 7K, &hh o —_Y. - ’

éylgv(k) 1) K pyJ Lx y TLya ‘ “ “ 0 LX J TLya t k

no=r =

with ay, ay, @, o, and B, constants. It should be noted that 5(a), and 3b), because the factqy,; in these terms distrib-
large fluctuations in the Lyapunov mode represented in thates their contributions randomly and these terms disappear
middle of Figs. 4b), 5(c), and 5d), can come from thex  after taking local time averages.

components of the second terms on the right-hand sides of _

the vectorg2) and(3). On the other hand, the effect of the D. Energy dependence of Lyapunov mode amplitudes
components of the first terms on the right-hand side of the In expressions(2) and (3) for the time-oscillating
vectors(2) and (3) does not appear explicitly in Figs(a&, = Lyapunov modes, the quantitieg, «, a,, anda, are intro-
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WM > 0 <8N/ Py> A < By P> 0 Fig. 6 almost coincide with each other, and this gives support
to the claim that the coefficients, on thex component and
they component of the first term on the right-hand side of

2
18|

16} o Eq. (2) coincide.
a4l ) ] In the above argument, we assumed the normalizability of
B g2 the spatial part only of the Lyapunov vectors. This can be
= 4 A l justified by the fact that, as shown in Sec. Il F, the spatial
=3 7 part and momentum part of Lyapunov vector modes show

08 |
almost the same mode structure, so each of them should be

:,):j I independently normalizable.
02 f-. ® o o °
0 . . . . . E. Spatial node structures of the Lyapunov modes and
° 2 ¢ ® ® 10 reflections at hard walls

-1/2
(2mEIN) The spatial node structure of the Lyapunov modes can be

2N-3)y explained using the collision rule for particles with hard
(circles, (x3/p, (triangles, and(éyfz'“‘@/pyj)t (Square);ats wglls. For(H,P) boundary co.nditi.ons, the particle coII[sions
functions ofjll\meE/N in the quasi-one-(jjimensional system of 50 V\{'th the hard walls in the direction cause a,Change n the
hard disks with(H,P) boundary condition. The broken line is a fit of S9N of thex component of the momentum with the remain-
the amplitudel@]| to a constant functiofi@]|=£ with a fiting pa- N9 components of the phase-space vector unchanged,

FIG. 6. Amplitudeg ;| and|a;| of Lyapunov modeséx}

rameter ¢, and the solid line is given by a linear function % — X 7)
&/2mE/N. i X
. " . - Yi— i (8)
duced simply as coefficients of the linear combination of the
longitudinal spatial translational invariance Lyapunov mode _ 9
and the time translational invariance Lyapunov mode. How- Pxj = = Pxj» 9
ever, it is important to note that these coefficients are related
to each other through the normalization of the Lyapunov Pyj — Pyj- (10)
mode. _ _ _ Similarly, in this type of collision, the« components of the
As the Lyapunov mode vector is normalizable, this lead§ yanunoy vector change their signs while the remaining
to the approximate relations components are unchanged,
’&/
] = i, @ 04— = 5, e
V2mEN
! " 6yl - &/J’ (12)
|| = |ay], (5
-~ ~ épxj -~ bbxja (13
AR (6)
with the massn (=1), the total energyg, and the number of OPyj — OPy;- (14
particlesN. Note that thex components of Lyapunov vectd; change

In Fig. 6, we show the amplitudés;| and|a, wrgizﬁrjs?re sign as well asp,;, which is different from the phase-space
obtained by fitting the Lyapunov modegdX™ “).  vector.
(X 1pyg), and (3™ Ipy), to sinusoidal functions  The important point is that a system with hard-wall
multiplied by constants, as functions of \2mE/N. Here we  boundaries is equivalent to an infinite system generated by
used a quasi-one-dimensional system of 50 hard disks witreflecting the positions and velocities of all particlé@s the
(H,P) boundary conditions, and calculated the amplitudeshard wal) and by changing the signs of allcomponents of
|aj| and|@;| for different total energiek. In Fig. 6, we fitted  the Lyapunov vectors at the hard wall. That is explicitly in-
the amplitudea,| for the mode(éXEZN'3>>t (circles to a con-  corporating the reflection symmetries for the phase-space
stant function@,|=¢ (the broken ling with a fitting param- vector an_d the Lyapunov vector at hard Walls._ If thg modes
eter value£~0.179, and the solid line is given by the linear of the entire system are smoothly connected sinusoidal func-
function & 2mE/N of 1/y2mE/N using this value of. The tions at the hard walls, then this condition requires that the
amplitudes| )| for the mOdes(éXfZN_s)/pxj)t (triangles and mode for the quantityx; has a node at a hard wall, because

(2N-3) o it changes sign there. On the other hand, the quantities
<‘3yj /pyj)_(squares are reasonably on this linear oX;Ipy; and dy;/py; do not change their signs at hard walls,

line £&/vV2mE/N, and these results support the relation Eq.so these modes should have antinodes at hard walls. These
(4), and also suggest that the amplituid| for the mode  results explain the spatial node structures shown in Fig. 5.
(*"9y is independent of 1/2mE/N. The amplitudesa;|  The spatial node structure of the stationary Lyapunov modes
for (a1 p,g), (triangles and(sy*"?/py)); (squaresin  in dy; corresponding to the one-point steps can be explained
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n=198 o n=195 » n=192 = (a) < ﬁpx””) >, 0.00(1)8 ——————
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o 0002 > 06 <
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& 1 04 Y
y ooz} i =
0.004 | £ 02 V
-0.006 |
567500
-0.008 —
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< xj > / Lx 0018 —===—-
0.0018 ............
FIG. 7. Global time average@b(y';)> for the Lyapunov expo- —n 1

nents corresponding to the first, second, and third one-point step of
the Lyapunov spectrurin=198 (circleg, 195 (triangles, and 192
(squarey] as functions of the normalized global time average
(X;)/L of the position of thejth particle.

<xj>i/ Ly

in this way. Becaus@y; varies sinusoidally and must satisfy
the reflection symmetry, it must be either a nddehe sign
changesor an antinod€if the sign is invariant Hence, in
this case the Lyapunov mode dy; should have an antinode
at the hard walls.

537500

F. Lyapunov modes in momentum components of
Lyapunov vectors

So far, we have discussed only the spatial components of
the Lyapunov vectors. In this subsection, we discuss briefly
the Lyapunov modes appearing in the momentum parts of
Lyapunov vectors.

One of the few differences between spatial and momen-
tum components of Lyapunov vectors is that the amplitudes
of the momentum components are often much smaller than
those of the corresponding spatial compondrits]. This
makes Lyapunov modes for the momentum parts of the hy
Lyapunov vectors less clear than the corresponding spatial . _
components. However, basically the structure of the FIG. 8. (Color onling Contour plots of the local time averages
Lyapunov mode for the momentum part of the Lyapunov°f<bpxj>t' (P! Pxj)r, and(py;/ py;); for the first exponent197) of
vector is quite similar to the corresponding spatial compo-n€ first two-point step as a function of the collision numbgand
nent. For this reason, in this subsection we omit a detailed® "0'malized position of thigh particle(in the collision number
discussion of the phase relations of multiple I_yapunovlnterval[535200, 56960]). The dotted lines, solid lines, and broken

(gnes are contour lines at the levels —0.0018, 0, and +0.0018,
modes for the momentum parts of Lyapunov vectors, an .

. . - respectively.

just show that there are certain mode structures in the mo-

mentum components of Lyapunov vectors corresponding to (197 ) o
the Lyapunov steps. (dpy;""Ipyjh as functions of the collision number and the

Figure 7 shows the mode structuretipfyr.‘) corresponding Normalized local time average;),/Ly in the first two-point

to the first three one-point stegs=198, 195, and 192as  step. We used the same collision number intef&&5200,
functions of the normalized particle positions fi=100. 569604 in Fig. 8 as in Fig. 5. The mode structures in
This structure is stationary in time, so we took their globalFigs. 8a)-8(c) are almost the same as Figsa)5 5(c), and
time average over 200 collisions, using the notatiof--)  5(e) for the corresponding spatial componer(w}w?))t,
for this global time average without the suffixThese modes  (sx(**?/p, ), and (8y'**”/p, ), respectively, although their
_— . . ] I ] Yl

are similar to the ones for the corresponding spatial §4ft  oscillating amplitudes are much smaller than those of the
discussed in Sec. Ill B. corresponding spatial components.

Figure 8 shows contour plots of time-oscillating The spatial mode structures of the momentum compo-

Lyapunov modes for <bb(X}97)>t, <¢‘>‘pgg7’/pxj>t, and  nents of Lyapunov vectors are explained by the same reflec-
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_ _ FIG. 10. The quantity.,/(7T y,) as a function of the number of

FIG. 9. Particle numbef(l;l&_g)epen.dence of t(gﬁ_geno'ﬂ_ya of " particlesN. Here, T, is the collision number interval given by the
the time OSC”'(%t’\l‘C_";)S o{ax ™" ")y (circles, (6" /pyy (- average of the three collision number intervas, for time oscil-
angles, and(dy; Ipyj (squaresin the quasi-one-dimensional |ations of the Lyapunov vector componentgsx'?V3),,

system with(H,P) boundary condition. The data are fitted to the (&((ZN_S)/p 3 and(éy(ZN"?’)/ 3, in the first two-point Sté of the

. _ 2 . i Xj/ts j py]t vt p p
function T y,=a+ BN~ with the fitting parametersy and 8. The
inset: Particle number dependence of the mean free tiwéh a
fitting function 7=+/N with the fitting parametey.

Lyapunov spectra. The line is given ly/(7T,,)=1, which is the
x component of the thermal velocityE/(mN).

tion property at hard walls, which was discussed in the pre-. , . 5 -
vious Sec. Il E. fitted to a quadratic functio,,=a+ BN~ with the fitting

parameter valuegr=17.9 andB~1.65. The inset to this
figure shows the mean free timeas a function of the num-
G. Particle number dependence of the oscillating periods ber of particlesN. The N dependence of is nicely fitted to
In Sec. IlIC, we showed that the quantitié@g(n)%, _the func_tionr_:y/N, wh_ereyzl.g_l. Noting that the period,
<&(}n)/pxj>h and<éyfn)/pyj>t corresponding to the two-point in real time, is appro_X|mater given byT,,, these r_esults
Lyapunov steps show time-oscillating behavior. Now wesqueSt that the period of the Lyapunov modes is almost

consider how the time-oscillating period of those LyapunovprOportlonal to the number of particléé

modes depends on the number of partidest fixed density. Now, we investigate the time-oscillating period of the
We evaluate the collision number interval for the time Lyapunov mcﬁes in a different way. Figure 10 shows the

oscillation of Lyapunov modes as follows. As shown in thequantityL,/(7T.y,) using the system length, the mean free

proce.eding(rﬁec. e, the .Lyapl(Jnr;ov modes re(ln?ted to thgime 7, and the averaged time-oscillating periads,, of the

quantity (8", (the quantities(sx"/pyj) and (3y;"/py))  Lyapunov modes in <&<§2N'3)>t, <6><}2N_3)/ Py and

have an antinode in the midd(at the endl of the system in (53,(2N—3)/pyj>t in the first two-point step of the Lyapunov
P —oN— _ i

thex.dllrect|or.1(n—2.N 3 and N-4) for th_e (H,P) bqundary spectrum. This figure suggests that this quantity is almost 1,

condition. L{f)'ng this property, we(ﬁ?ok six data p(c;l)nts for theg 4t is, independent of the particle numbertherefore equal

quantity () (the quantities(dx; "/ Py and (y;"/Py)) o thex component of the thermal velocityE/(mN).

(n=2N-3) in the middle(at the end of the system with the

(H,P) boundary condition. These data are fitted to a sinu-

soidal functiona sin{(27n,/T,y,)+b} of n; with fitting pa-

rametersa, b, andT,,,, which leads to a numerical estima- IV. AUTOCORRELATION FUNCTIONS

tion of the period T;,, of the time oscillation of the

Lyapunov modes. The collision number interla|, can be In this section, we discuss another property of the quasi-

translated into a real time interval by multiplying by the gne-dimensional system, namely, the time-oscillation behav-

mean free timer. _ . _ior of the momentum autocorrelation function. This is a typi-
Figure 9 is the graph of the peridd,, of the time oscil-  ¢a| measure of the collective behavior of many-particle

lations  of <®(}197)>t (circles, <&(§lg7)/pxj>t (triangles, and  systems. We connect this behavior with the time-oscillating
<5y}197’/pyj>t (squares in the quasi-one-dimensional system behavior of the Lyapunov modes, suggesting that the time
with the (H,P) boundary condition, as functions of the num- oscillation of the Lyapunov modes can also be regarded as a
ber of particlesN. Spatial and temporal behavior of these collective mode.

guantities has already been shown in Fig&)44(b), and We calculate the autocorrelation functio@g(t) for the 7

4(d) for N=100. Figure 9 shows that the three time component»=x ory) of the momentum using the normal-
oscillations associated with{ax'*"), (x'**”/p,), and  ized expressiorC,(t)=C,(t)/C,(0), in which C,(t) is de-
<éy}197)/pyj)t all have the same period. In Fig. 9, the data arefined by
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FIG. 11. (Color onling The autocorrelation functio@, andC, . . —_—
for thex andy components of momentum, respectively, as functions . FIG. 1.2' (Color onling The time-oscillating part of autocqrrela-
L A o ; tion functionC, for the x component of momentum as functions of
of the collision numbemn,. Main figure: Linear-linear plots o€, = L .
. . . the collision numben,. Here, the line is the fit to the product of a
andC, as functions ofh.. The inset: Log-log plots of the absolute sinusoidal and an exponential function
values|C,| and|C,| as functions ofy. Here, the broken line is a fit P :
of the graph ofC,| to an exponential function, and the line is a fit _ )
of the graph of|Cy| to a x-exponential functior{defined by Eq. tions C; andC, for the momentum components in tkeand

19)]. y directions, respectively, as a function of the collision num-
bern, in the quasi-one-dimensional system witl- 100 and

Ny T (H,P) boundary condition. The main figure in Fig. 11 is a
E:,](t) = Iim 1 E dsp,;(S+1p,(9). linear-linear plot of the autocorrelation functio@g andC,,

T+ (No =Ny + 1)Tj:N1 0 while its inset is a log-log plot of the graph of the absolute
(15) values|C,| and|C,|. In this system, the mean free time is
given by 7=0.0188. From Fig. 11 it is clear that the momen-
Equation(15) includes a time average and an average ovetum autocorrelation function has a strong direction depen-
some of the particlegfrom the Njth particle to theN,th ~ dence and shows a time-oscillating behavioCin
particle in the middle of the systentNote that the particles Initially, the autocorrelation functio, decays exponen-
are numbered,, 2, ... N from left to right in the system, as tially with time. To show this point, in the inset to Fig. 11 we
shown in Fig. 1). In actual calculations, we choodg=[(N fitted the initial part of|C,| to an exponential function
+1)/2]-5 andN,=[(N+1)/2]+5 with [x] as the integer part ,
of the real numbek. This means that we take into account Gy(n) = expl- a'ng, (16)
only 11 particles in the middle of the system in the calcula-ii, the fitting parameter valua’ ~0.0385.

tion of the autocorrelation functio,(t). (In this paper, we  Tpe significant point about the autocorrelation funct@n
consider the casdi=40> 11, It should be noted that using s its time-oscillating behavior. To show this behavior explic-
the (H,P) boundary condition, the autocorrelation function ity, we show Fig. 12 as an enlarged graph of the time-
for particles near hard walls is different from the ones forgscillating part ofC,, which is already shown in Fig. 11. This
particles in the middle of the system, as discussed in Appenime oscillation accompanies a time decay, so we fitted this

dix A. Especially, the momentum autocorrelation function of 4raph to the product of a sinusoidal and an exponential func-
particles near hard walls does not show clear time-oscillatingion G,(n,), namely,

behavior. To get the clearest time-oscillating behavior for the

autocorrelation functiorC,(t) and to get fewer hard-wall .2
. 7 : Gy(n) = Ae P sinl —n, + ¢ 17
boundary condition effects, we exclude the autocorrelation 20 = Toct t '
functions of particles near hard walls in the calculation of o
C,(b). with fitting parameters A, B', T, and & The time-

If the system is ergodic, the value of the autocorrelationoscillating part of the autocorrelation functidzy is nicely
function (15) will be independent of the initial condition. To fitted to this function with the parameter valugs=0.0209,
get the results for the autocorrelation function, in this section3’ =5.17X 1075, T,~8.29X 10% and ¢=~1.62. This also
we take a time average of the autocorrelation function ovegives us a way of numerically evaluating the oscillation pe-
more than 2 1C° collisions. In the figures, the auto- riod T, of the autocorrelation functio@,. We note that the
correlation functions are shown as functions of the collisionquasi-one-dimensional system shows a much clearer time-
numbern;. oscillating behavior of the momentum autocorrelation func-
tion than a fully two-(or three} dimensional system. One
may ask whether the damping behavior of the envelope of
time oscillation ofC, is best fitted to a power-law function,
like the slow damping of the long time behavior@y, rather
Figure 11 contains the momentum autocorrelation functhan to an exponential function as assumed in(E@). (Ac-

A. Momentum autocorrelation functions and their
direction dependence
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tually the data in Fig. 12 are not sufficient to decide between 20000
exponential and power decaihis point is discussed further
in Appendix B.

On the other hand, the autocorrelation funct@pshows
a different behavior fronC,. This comes from the specific
shape of the system and the boundary conditions. As shown
in Fig. 11, the damping of the momentum autocorrelation
function C, is much slower than fo€,. This is explained by
the fact that in this quasi-one-dimensional system, a collision
where the vector separation between particle centers points
purely in they direction (either positive or negatiyecannot 0
occur, because the periodic images of the particle prevent
other particles approaching in this direction. This preferential Toes
collision geometry leads to a preference for a larger change _
in the x component of momentum at collisions than the FIG. 13. The periodT,y, (in collision numberk of the time
component of momentum, and hence a faster decay dEthe oscillation of the Lyapunov mode as a function of the period of time
correlation function. In the inset to Fig. 11, the graph of theoscillation of the longitudinal momentum autocorrelation function
autocorrelation function for theQ, is fitted to the Tac+ Data points are obtained from numerical calculation of the

0 2000 4000 6000 8000 10000

“ k-exponential function’F (), which is defined by guasi-one-dimensional system withl,P) boundary condition for
o different numbers of particleN=40,50,60,...,100 at constant
R )
F (1) =[V1+(a"kt)?— " kt]¥", (18)  density. The line is given by the functioh y,=2Tyr.

with o’«xt=0 and fitting parametersy” and «. In the . ) o )
collision number region shown in Fig. 11, the autocorrela-functionC,. Here, the time-oscillating periods are calculated

tion functionC, is positive, so this fitting can be fag, as ~ of N=40,50,60, ...,100 at constant density, and the time-
well as for \CyT- From the definition, in the limit agx=0 oscillating periodsT, , are calculated as the average of the
the function F,(t) becomes the exponential function: collision number intervalT,, for time oscillations of the
lim o F(t)=exp{-a’t}, noting F(0)=1 and JF(t)/st=  Lyapunov vector componen(@X}ZN_3)>t, (b)(J(ZN_E‘)/ Py, and
-aF (t)/\1+(a’kt)?, so this function is a one-parameter <5y}2’“‘3>/ Py in the first two-point step of the Lyapunov
deformation of the exponential functi¢gd5]. The important  spectra.(As shown in Sec. Il G, these three oscillating pe-
properties of this function are that it is approximated by anriods T, of the Lyapunov modes take almost the same val-
exponential function at smakl’«t and is approximately a ues) In Fig. 13, we also show the line given by the function
power function at largen’t [by direct expansion of Eq. Tiya=2T,er. The numerical data for the time oscillations in
(18], Fig. 13 are nicely fitted to this function, and suggest the

F gt ino'kt<1 9 relation
) (k)™ V% in o'kt> 1. Tiya= 2Tt (20

Fitting the numerical data for the autocorrelation funct@n ~ This is the main result of this paper. The result given in Fig.
to the x-exponential functiorF (n,) with parameter values 13 supports the particle numbg) independence of the re-
«'~0.00 358 andc~ 1.44 is very satisfactory, and this im- lation (20) with a_ﬁxed density, but this _relatlon is also inde-
plies that this autocorrelation function decays exponentially@ndent of density changes. The density independence of the
initially (like C,), and decays as a power function after that,elation (20) comes from the fact that the time-oscillating
at least in the time scale shown in Fig. 1This does not PeriodsT,e; and Ty, in mean free time unit do not almost
mean that the autocorrelation functiod, decays as a depend on the particle density. .
x-exponential function in any time scale. See Appendix B In Table I, we summarize not only the values of the time-
aboutC, at much longer time scales than shown in Fig) 11. oscillating periodsT, .7 and Tyr of the Lyapunov modes
and the momentum autocorrelation function in real time, but
also the data for th&l dependences of the damping proper-
ties of the autocorrelation functior® andC,. They include
the mean free timer, the exponential damping times o’
_ ) o and7/p' (for C,) and 7/«” (for C,), and the power 14 of
. We have ShOWn the tWO k|nqs of time-oscillation behaV'the damp|ng Oty at |Ong time. Here’ values Qf" B" and
iors in the quasi-one-dimensional system: one for ther, . (o and «) are derived by fitting the autocorrelation
L_yapunov_ mode and another for the momgntum autocorrelagnction C, (C,) to Egs.(16) and (17) [Eq. (18)]. From this
tion function. Now we show numerical evidence to connectgpje it is clear that the exponential damping timéa’ and
these two behaviors. _ . 7/, and the power 14, are almost independent of the par-
Figure 13 is the graph of the largest time-oscillating peé-ticle numberN. On the other hand, the exponential damping
riod Ty, of the Lyapunov modes as a function of the time-time 7/8’ of the time oscillation of the autocorrelatiddy,
oscillating period T,; of the momentum autocorrelation increases a#l increases(We have already discussed tNe

B. Particle number dependence of the autocorrelation
function and its relation to the time oscillation
of the Lyapunov modes
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TABLE I. Time-oscillating periods and decay rates for the Lyapunov modes and the momentum autocorrelation functionsistHkee,

number of particlesy is the mean free time, anti, is the collision number interval given by taking an average of the three collision
number intervald , for the time oscillations of the Lyapunov vector componéidis);, {OX;/ pyj), and{dy;/ py;); corresponding to the first
two-point step. The parametet is given by fitting the beginning of the longitudinal momentum autocorrelation fun@joss a function

of the collision numben, to an exponential functio@,=expg—a’n}. The parameter8’ andT,.; are given by fitting the time-oscillating part

of the same functioi€, to the functionC,=A exp{-B'n}sin (27/ TN+ £&]. The parameterg” and « are given by fitting the transverse
momentum autocorrelation functid®y, as a function of the collision numbe to the x-exponential function in Eq(18).

Lyapunov mode & S

N T ﬁyar Tla' 7B’ TactT 7" 1/k

40 0.0489 124 0.49 74 63 5.3 0.73
50 0.0380 154 0.48 103 76 5.3 0.72
60 0.0326 197 0.51 156 97 54 0.68
70 0.0275 223 0.49 196 108 53 0.61
80 0.0238 257 0.49 205 125 4.7 0.58
90 0.0210 283 0.49 252 140 4.9 0.62
100 0.0188 306 0.49 363 156 53 0.69

dependence of the mean free timén Sec. Il G) show their exponential decay as straight lines. In this figure,

the fits to the exponential function E¢L6) with the fitting
parameter’ are given for the casg®,P and(H,P) and the
C. Boundary condition effects casegP,H) and(H,H) separately. The dotted line is the fit for
So far, we have concentrated on the quasi_onethe CaSEiP,F) and (H,P) with the flttlng parameter values
dimensional system with hard-wall boundary conditions in@’=0.0765, and the broken line is for the casP¢) and
the x direction and periodic boundary conditions in tge (H,H) with the fitting parameter values’~0.0597. Figure
direction, namely, théH,P) boundary condition, for techni- 15(b) is the time-oscillating part o€, in the four different
cal convenience in the analysis of the Lyapunov modes. oRoundary conditions. In this figure, each autocorrelation
the other hand, in Ret18] we have a|ready discussed and function is fitted to the funCtiOf(ll?) with the flttlng param-
compared Lyapunov steps and modes in the different bound- Boundary (P,P)
ary conditions: the purely periodic boundary conditions e e e s ————mE e -
(P,P, the purely hard-wall boundary conditiortisl,H), and ! . ‘ ’ ‘ ‘ ‘ '
periodic boundary conditions in thedirection and hard-wall A AR A A AN AN 4 A
boundary conditions in thg direction (P,H) as well as the
boundary condition(H,P). In this section, we carry out a Boundary (PH)
similar discussion for the momentum autocorrelation func- I = 1
tions C, in these different boundary conditions. Figure 14 L ‘ ‘ ‘ . . ‘ !
contains schematic illustrations of these boundary condi- b )

tions. . . ) Boundary (H,P)
For meaningful comparisons between the different bound-

ary conditions, we use the same masand radiuR forthe [ @8\ ‘ """" ‘ ""‘""b"'
particles, and the same number of particlBs=50). Using __,_________,_____________________
the set of the lengthd,,L,) to define the size of the system
in the x andy directions for(H,P) boundary conditions, we
use (Ly-2R,L,) for (P,P boundary conditions(L,—-2R,L, = — =
+2R) for (P,H) boundary conditions, and.,,L,+2R) for . . ' ' . .
(H,H) boundary conditions. This gives the same effective
area for particles to move in each of the four systems. This
also means that the mean free timén these four types of
boundary condlt_lons _WlII be the sameoncrete numerical tems. Here(P,P is the purely periodic boundary conditior®,H)
valu_es ofr are given in Table L _ ) is periodic boundary conditions in the direction and hard-wall
Figure 15 shows the autocorrelation functi@hysfor thex  poundary conditions in the direction, (H,P) is hard-wall boundary
component of the momenta in quasi-one-dimensional Sysconditions in thex direction and periodic boundary conditions in
tems consisting of 50 hard disks with boundary conditionshey direction, and(H,H) is the purely hard-wall boundary condi-
(PP, (P,H), (H,P), and (H,H) as functions of the collision tions. The dashed lines and the solid lines on the boundaries repre-

numbern,. Here, Fig. 1%a) is the initial part of the autocor- sent periodic boundary conditions and hard-wall boundary condi-
relation functionsC,, and is given as a linear-log plot to tions, respectively.

Boundary (H,H)

FIG. 14. Schematic illustrations of the four boundary conditions
(P,P, (P,H), (H,P), and (H,H) used in quasi-one-dimensional sys-
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TABLE II. The mean free timer, the time-oscillating time pe-
riod Taer Of the longitudinal momentum autocorrelation function

C and the average of the longest time-oscillating time pefiggr

of the Lyapunov vector, for the different boundary conditioR$),
(P,H), (H,P), and (H,H) in a quasi-one-dimensional system of 50
hard disksT,, is the average over three collision number intervals
of T ya Here, Ty, is the average of the time oscillations of the
three componentséxfk))t, <é>(§k)/pxj)t, and(éy}k)/pypt for the first
Lyapunov step which has time-oscillating Lyapunov modks
=2N-5 for (P,P, k=2N-2 for (P,H), k=2N-3 for (H,P), and k
=2N-1 for (H,H)].

Boundary T Tact™ f_yar
(PP 0.0369 37.4 77.0
(PH 0.0371 45.8 91.4
(H,P 0.0380 77.3 154.5
(H,H) 0.0383 96.8 194.5

etersA, B', T.er, and & The values of these fitting param-
eters are (A, B, Taet, §)=(0.0422,0.001 08,1.00
x10%,1.39 for (PP, (A, B Tact: &)
~(0.0447,0.000 803,1.2410°,1.33 for (P,H),
(A, B, Taer, §) =(0.0398,0.000 369,2.0410°%,1.56 for
(H,P), and (A, B, Taet, &) =(0.0403,0.000 246,2.53
X 10%,1.56 for (H,H).

Figure 1%a) shows that the boundary condition in tige
direction has a strong effect on the autocorrelation function FIG. 15.(Color onling C, as a function of the collision number
C, even at short time. In the cas@3P and(H,P), the auto- n« for each different boundary conditiofP,P, (P,H), (H,P), and
correlation functionC, shows faster exponential decay than (H,H). The systems are quasi-one-dimensional systems consisting
for (P,H) and(H,H), as shown in the difference of the value .of. 50 hard Flisks. We observ@) exponentiall decay region in the
of the fitting parametes’ for the exponential fitting function initial damping of_ the autocorrelation _functno@x as a linear-log
Eq. (16). In the collision number region shown in Fig. (&5 plot. The dotted line and the broken line are the fits fqr the cases
the effects of the boundary conditions in thedirection in  (F:P and(H,P) and the caset”,H) and(H,H) to exponential func-

the autocorrelation functiolc, appear after showing their 1ONS: respectively(b) Time-oscillating region of the autocorrela-
initial exponential decays, and the autocorrelation functiort " funCt;or.‘SC? as a I|near-I|r]1_ear plot.hThfe four graphs of the
C, for (P.P [and (P.H)] decays faster tha@, for (H,P) [and aut,ocor_re ation function€, are fitted to the unctlonﬁix—,A exp
(I-)|(,H)]. =B'nsin{ 27/ T+ & with the fitting parametersd, B', Tach

On the other hand, Fig. 15) shows that in all the bound- ndé
ary conditions, the autocorrelation functiog show time _
oscillations, but with different oscillating periodss. In this ~ (P,P, (P,H), (H,P), and(H,H). Here, the period,, is evalu-
figure we can recognize that the second peak.ofor (P,P ated as the arithmetic average of the collision number inter-
coincides with the first peak @, for (H,P). A similar coin-  vals T, for the quantities <@<}k)>t, <6><j(k)/pxj>t, and
cidence appears in the second pealCoffor (P,H) and the <ay§k)/pyj>t. The Lyapunov indicek are chosen from the
first peak ofCy in (H,H). Actually, the fitting parameter value | yapunov exponents in the first Lyapunov step which has
of Tyt for (PP [(P,H)] is approximately half the value of time-oscillating behavior of its Lyapunov modes. Our result
Tact for (H,P) [(H,H)]. This can be simply explained by the sypports the conjecture that the relati@d) is satisfied for

fact that when replacing the periodic boundary conditionsy|| houndary condition¢P,P, (P,H), (H,P), and (H,H).
with the hard-wall boundary conditions, twice the time is

required for a particle perturbation to come back to the same

position. D. An explanation for the relation of time-oscillation periods
Finally, we show the relation between the time-oscillating of the Lyapunov mode and the momentum
periods of the Lyapunov mode and the momentum autocor- autocorrelation function

relation function for different boundary conditions. In Table  As we have shown, the relationy,=2T,cr [EQ. (20)]

II, we su_mmarize the mean free timethe time-pscillating between the largest time-oscillating periol,, of the
time periodT,.¢r of the momentum autocorrelation function | yapunov modes and the time-oscillating peribg of the

C,, and the time-oscillating time periofl y,7 of the largest momentum autocorrelation function is independent of the
Lyapunov mode for the four kinds of boundary conditionsnumber of particles\ and the boundary conditions. In this
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subsection, we discuss a possible explanation for this rela- 1 —
tion, which is a physical argument rather than a strict math- 08 ﬂ
ematical proof. 06 n
First, we consider a momentum componggt), like the 04
x component of the momentum in the quasi-one-dimensional 3% 02 |
system, which shows a time-oscillating behavior in its auto- sbb 0
correlation function with a frequenay,s, 02 ¢
~ *er i -04
Be(D) Py(0) ~ h(t)e e, (21) s U U U U
where we use the notatiof(t)"X(0) for the autocorrelation -08 u U
function *for any complex quantlt).((t) with complex conju- T 10000 20000 30000 40000 50000
gate X(t)". Here ¢(t) is the damping envelope of the auto- "y
correlation functiorp,(t)"p,(0), which can be an exponential
decay, ¢(t) ~ exp{—at}, with a positive constard (see Ap- FIG. 16. (Color online The normalized autocorrelation function
; (2N-3) P 2N-3)
pendix B. C for the longitudinal Lyapunov vector componem% as

Next, we consider the time-dependent Lyapunov mod@LfyLia'r)l(ction of the collision numbenm, for a quasi-one-dimensional
with the largest time-oscillating period, and we represent it$ystem of 50 particles wittH,P) boundary condition. The numeri-
momentum proportional and time-oscillating term in thecal data are weII_ fitted to a sinusoidal function multiplied by an
Lyapunov vector, like thex component of the first terms on €xPonential function.
the right-hand sides of Eq&2) and(3), as o A _— i

~ component &;© is chosen so that the correspondin
&~ (OB (22) Lyap?mov step is the first two-point step associatepd Withga
with a frequencyw o, Whereys(t) is the envelope function time-oscillating Lyapunov mode. In Fig. 16, the numerical
of the amplitude of&G,, and it may show an exponential data are fitted to a sinusoidal function multiplied by an ex-
divergence (or contraction following the corresponding Ponential function, namely, the functi¢t?), with the fitting
Lyapunov exponent. Now, we assume that if the quardlity =~ parameter valuesA=0.967, 8’ =~1.03X10°° T,u=Tac

oscillates persistently in time, then its autocorrelation func-~ 4.12x 103, and é&~1.54. This time-oscillating perioda.
tion &G,(t)" &Gx(0) should oscillate in time with the same fre- for the autocorrelation function for the longitudinal

quencywy,, Namely, Lyapunov vector component coincides almost exactly with
= jwLyal the time-oscillating periodT,.~4.07x 10° of the corre-
(1) (0) ~ g e 23 sponding Lyapunov mode. This coincidence of the time-
with a new envelope functiog(t). oscillating periods supports our assumption E2f) [46].
It follows from Egs.(21)—(23) that
Po(t) €Lyt ~ 1 (1) by (0)Py(1) Py(0) e eLyat V. CONCLUSION AND REMARKS
~ (1) ¢1(0) p(t) € e nat, In this paper, we have discussed the relation between the

wavelike structure of Lyapunov vectors and the time-

which immediately leads to S X .
y oscillating behavior of the momentum autocorrelation func-

(1) ~ Y (1) 4, (0) (1), (24 tions in quasi-one-dimensional many-hard-disk systems. The
quasi-one-dimensional system is a narrow rectangular sys-
O ya ~ Wacil2. (25  tem in which thex components of the particle positions re-

mained in the same order. This system was proposed as a

The time-oscillating periods,e; andT,y, of the momentum many-particle system which shows clear stepwise structure

autocorrelation function and the Lyapunov _mode_ are_giverbf the Lyapunov spectrurtthe Lyapunov stepsand wave-
by Taei~ 2/ (7wacy) @ndTyya~ 27/ (w1 ye). USing this point o syricture of the associated Lyapunov vectdtbe
and Eq.(25), we obtain our Eq(20). Note that the above | 4500y modes Using this system, we showed that there
explanation forT,,=2Tq( is independent of the number of 46 4o types of Lyapunov modes in the spatial and momen-
particlesN and the boundary conditions. _ _ tum components of the Lyapunov vectors corresponding to
In the above explanation, the assumpti@3) is crucial, he o kinds of steps in the Lyapunov spectrum: one is
so it may be useful to demonstrate this behachzg)numencallystationary in time and the other involves a time oscillation.
Figure 16 shows the autocorrelation functiof;,” for the  Here, the time-oscillating Lyapunov vectors consist of a
longitudinal Lyapunov vector componerﬂx.(2 = normal- simple time-oscillating part plus a momentum proportional
ized by its initial value(about 0.0208 in a quasi-one- time-oscillating part in the longitudinal components, while
dimensional system of 50 particles witH,P) boundary con- the transverse time-oscillating Lyapunov vectors consist of a
dition. In the autocorrelation functioﬁ(l_z';'f‘), its mean value momentum proportional time-oscillating part only. We re-
is subtracted, and an average over the autocorrelation fungealed the phase relation for these time-oscillating Lyapunov
tions of 11 particles in the middle of the system is taken.modes. It was shown that the system length divided by the
Here, the Lyapunov inder=2N-3 of the Lyapunov vector time-oscillating periodin real time of the Lyapunov modes
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is independent of the number of particles at the same densitwhich suggests that translational invariance is only evident
and is of the order of thg component of the thermal veloc- when it is observed in the zero-Lyapunov exponent modes
ity. After discussing these wavelike structures of thewill not predict these observed longitudinal modes.
Lyapunov vectors, we connected them to the time oscillation |t should be noted that a time dependence of the
of the momentum autocorrelation. The time oscillation of theLyapunov modes may not a|WayS appear as a time-
autocorrelation function appears in the longitudinal compo-yscillating behavior. Referendd.9] claims that the spatial
nent of the momentum, and its envelope decays exponeRgaye of the Lyapunov vector “moves” at a specific speed in
tially in time. The main point is that the largest time- e square system consisting of many hard disks. It is inter-

oscillating period of the first time-oscillating Lyapunov egting to know how these different behaviors, one oscillating
modes is twice as long as the time-oscillating period of thqn time and another moving with a speed, can appear
momentum autocorrelation function. We showed that this re- In some papers, an understanding of tﬁe Lyapunov .modes

lation is independent of the number of particles and the . :
boundary conditiongconstructed from combinations of pe- Wwas attempted based on an analogy with the hydrodynamic

riodic and hard-wall boundary conditionsA simple expla- mOdeS[lg]' Actually, in both cases the conservation laws
nation is given for this relation. It was also shown that the“ke the total momentum conservation and the energy conser-

autocorrelation function for the transverse component of th¥ation play an essential role, and the longitudinal mode
momentum is nicely fitted to the-exponential function, im- shows a time-dependent behavior. However, it is important

plying that it decays exponentially at the beginning and def0 know that the deterministic nature of orbits also plays one
cays as a power after that. of the essential roles in the Lyapunov modes and leads to
In this paper, we considered mainly a specific boundarynomentum-proportional time-oscillating components  of
condition for the quasi-one-dimensional systei;P) hard- ~ Lyapunov vectors, although such a characteristic does not
wall boundary conditions in the longitudinal direction and @ppear explicitly in the hydrodynamic mode. In this sense, it
periodic boundary conditions in the transverse direction. Thds still an open question to see how hydrodynamic modes,
system with this boundary condition exhibits a much cleatvhich have no concept of a phase-space trajectory, can in-
wavelike structure of Lyapunov modes than the purely periorporate time translational invariance.
odic boundary conditionéP,P, which is a big advantage for ~ From results of this paper, it is suggested that there is a
quantitative discussions of the Lyapunov modes. Using th&onnection between the existence of the stepwise structure of
(H,P) boundary condition, the spatial translational invarianceLyapunov spectra and the time oscillations of momentum
in the longitudinal direction is violated, and it leads to q autocorrelation functions. It is well known that the stepwise
different Lyapunov step structure and autocorrelation funcStructure of the Lyapunov spectra appears clearly in rectan-
tions, compared with thé®,P boundary conditions. For ex- gular systems rather than in square systems at the same den-
ample, in(H,P) the step widths of the Lyapunov spectrum sity. Is it possible to get a similar result for the time oscilla-
are half of the ones itP,P, and individual particles can have tion of the momentum autocorrelation function? For
different momentum autocorrelation functions due to the€xample, in a square system with a small number of hard
backscattering effect of the hard watlee Sec. IV Cwhile ~ disks we cannot observe the stepwise structure of the
the momentum autocorrelation function is particle- Lyapunov spectrum, and in this case the time oscillation of
independent for théP,P boundary condition. However, as the momentum autocorrelation function does not appear.
discussed in Ref(18] for the Lyapunov modes and in Sec. Therefore, the time oscillations of the autocorrelation func-
IV C for the autocorrelation functions, there is a simple re-tion may be useful to understand the condition for the exis-
lation connecting the results obtained from different boundtence of the Lyapunov steps and modes. In this sense, for
ary conditions, so we can predict some of the results of th&xample, it may be interesting to investigate the time-
other boundary conditions from the results féf,P). correlation function in systems with soft-core particle inter-
The mode structure of Lyapunov vectors discussed in thigctions in which the observation of the Lyapunov steps is
paper is related to the structure of the Lyapunov vectors agnuch harder, and less direct than in systems with hard-core
sociated with zero-Lyapunov exponents. As explained in théhteractions.
Introduction, there are sets of Lyapunov vector components
which take a constant value indeperjdent of the pa(ticle in- ACKNOWLEDGMENTS
dex, and these quantities corresponding to the stepwise struc-
ture of the Lyapunov spectrum have wavelike structures. One of the author§T.T.) thanks A. Aliano for suggesting
These are connected with the spatial and time translationdhe x-exponential function. We are grateful for the financial
invariances and the energy and momentum conservatiogupport of this work by the Australian Research Council.
laws. The results obtained here should generalize to two- an@ne of the author$T.T.) also appreciates the financial sup-
three-dimensional systems with the appropriate changes tort of the Japan Society for the Promotion of Science.
the allowedk vectors. However, we need to be careful when
making a connection between the conservation l&wshe
translation invariancesand the Lyapunov modes. For ex-
ample, in a system with hard-wall boundary conditions, the
spatial translational invariance is violated, but even in such In this appendix, we discuss the momentum autocorrela-
systems the mode structure in the Lyapunov vector compaion function of individual particles in the quasi-one-
nent &(}“) (or ay}m) can be observed. However, a scenariodimensional system witfH,P) boundary conditions. Differ-

APPENDIX A: MOMENTUM AUTOCORRELATION
FUNCTION OF INDIVIDUAL PARTICLE
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FIG. 17. (Color online Autocorrelation functions foc,”, ¢,

and ciso) for the x components of momenta of the 1st, 20th, and
50th particle, respectively, as functions of the collision numier
The system is a quasi-one-dimensional system With100 and
(H,P) boundary condition. The inset: enlarged graphs in the smal
magnitude part of the autocorrelation functions.

FIG. 18. Exponential decay region of the autocorrelation func-
|_tionscf(l) (circles, cf(z) (triangles, andcfo) (squarepas functions of
the collision numbem, on a linear-log plot. The solid lingthe
dotted-broken linesis a fit of the graph ot:f(l) (the graphs ot:f(z)

ent from the (PP boundary conditions, the hard-wall and cffo)) to an exponential function. Similar graphs are given for

. ’ . . . the autocorrelation functioné/l) (inverted triangles c? (pluses,
y
g_oun'?ary In(';’ﬁ)].vplat?s thatzagilratlontmvatr_la}nce in ﬂ;e and C;SO) (crosseps The broken lingthe dotted ling is a fit of the
irection, an is implies that different particles can have ) andc(yso)) to an exponential function.

1
different momentum autocorrelation functions. graph Ofc(y ' the graphs ot
We introduce the autocorrelation functioi;‘]?(t) of the jth
particle in the direction at timet (»=x,y) based on the
normalized expressiong)(t) ET:i?(t)/?:g)(O) with T:(;)(t) de-

Another difference between individual particle autocorre-
lation functions appears at short time. Figure 18 shoWs
j=1, 2, and 50, as functions of the collision numbgshow-

fined by ing the initial damping behavioty=x,y). These autocorre-
1 (T lation functions show an exponential decay, which we
E(,;)(t) = |lim —f dsp(s+t)pyi(s). (A1) present as a linear-log pléstraight lines imply exponential
T+ TJg decay. This figure shows that the componently compo-

) - neny of the autocorrelation function of the particle nearest
Using this quantity€,'(t), the autocorrelation functio,(t)  the hard wall decays fastéslowe) than those of other par-
defined by Eq.(15) is simply given byan(t):[ll(Nz—Nl ticles, while the damping behavior is always nicely fitted to
+ 1)]2}\':2N1”c(;)(t). In this appendix, we show graphscéf asa a;ln exponentlgllf]lcmctlpr[.llnGFlg.. hlsﬁ thf_e graphs are fitted Ito
function of the collision numben,=~t/7 in the quasi-one- the exponential functiof16) with the fitting parameter val-

s (1) T . 2
dimensional system of 100 hard disks. We number the pat€S®' =0.0457 forc,” (solid line), a’~0.0369 forc,” and
: i N Fi 50 (dotted-broken ling a’'~0.00184 forc'” (broken
ticles1,2, ... N from the left to right, as shown in Fig. 1, so, % otted-broke K o, or Gy (broke
for example, the first anMth particles are closest to the hard line), anda’~0.003 68 forc ™ andc,™ (dotted ling.] This
walls. difference may come from the different types of collisions

The first important point about the individual autocorrela- experienced. For the particle nearest the wall, half of the
tion functions is that the time oscillation in thxedirection is ~ collisions will be with the wall and the other half with the
weak for particles near the walls. This is shown in Fig. 17,ne|gh_bor|ng particle. The component of the_ momentum Is
wherec” is for the particle nearest to the left hard waff® ~ drastically changethamely, it changes the sign pf;), so it

is the particle most distant from the hard walls, mfﬁg) isa May cause a faster decay of the autocorrelation function in

particle between these two extremes. In Fig. 17, the maiﬁhex direction. On the other hand, collisions with the wall
figure is the full data for these autocorrelation functions, andef.fe.Ct the_y component of th? momentum much less, because
its inset is an enlarged graph to emphasize the timelt Is invariant under wall collisions, and does not cause a loss

oscillating part. This figure shows that we cannot recognize %IQ%T?z lﬂgy%irlset(?a(::gilttr% a asrlt(i)c\:l\llsrir??ﬁeay ;i;ggoi“tocor'

time-oscillating behavior wpf(), the .par_tlcle nearest to the Another point of differenc% in the auto)gorrelation func-

hard wall, although a clear time oscillation can be recogmzecg. S . ; . . ;

in c® the particle in the middle of the system. We can se ions of |nd|V|dga_I pgrncles is a negative region which ap-
x o 20 . o ) ears after their initial exponential decay. It may be mean-

a time-osciliating bggawor Mo but its amplitude is ingful to mention that a negative region of momentum

smaller than that o€, . The positions of the nodes of the gytocorrelation function has drawn attention previously

time oscillations ofc>” andc®® almost coincide with each [47-49. To discuss such a negative region, in Fig. 19 we

other. show the collision number, dependence of the autocorrela-
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start (aboutn;~ 6000 in Fig. 20. The negative peak of the
autocorrelation functiofdiscussed in the previous paragraph
and indicated by the arrows in Fig. Rhoves to larger col-
lision numbern; as the particle indeX increases from
=10 to 35 in Fig. 20. On the other hand, the time oscillation
of the autocorrelation function starts from abayt= 6000,
which is independent of the particle index, although the am-
plitude of the time oscillation is largest for a particle far from
the hard walls. Moreover, the time-oscillating period of the
autocorrelation function is almost independent of the particle
index. These characteristics of the time oscillation of the
autocorrelation function suggest that the time-oscillating be-
havior of the autocorrelation function reflects a collective

FIG. 19. (Color onling The negative region of autocorrelation Movement of the system.

functionscf(l), cf), cff), andcf(lo), as functions of the collision num-
bern; as a linear-linear plot. The inset: absolute values of the same
autocorrelation functions as functions mfas a log-log plot.
tion functionscl”, ¢'?, ¢'¥, andc'?. To emphasize the nega-
tive region of the autocorrelation function, we show a log-
log plot of the absolute values of the same quantities as
functions ofn, in the inset to Fig. 20. In this figure, a nega-
tive region of the autocorrelation functions appears after the
initial exponential decay and before the time oscillations ap-
pear. The collision numbefor time) at the bottom of this
negative region of the autocorrelation function increases, and
the amplitude of the bottom decreases, as the particle is far-
ther from the hard-walinamely, as the particle indgxn cf(”
increases fromy=1 to 10 in Fig. 20. This phenomenon can
be explained by the backscattering effect of the hard walls.
Such a backscattering effect is stron¢g®s the amplitude of
the negative region is strongen a particle closer to a hard
wall. As well the time interval to react to the presence of the
wall is longer (so the time at the bottom of the negative
region is latey in a particle far from the hard wall. This kind
of behavior is not observed in a system in which the bound-
ary conditions in the direction are periodic.

After the negative region, the time-oscillating part ap-
pears. Figure 20 shows the collision numingdependence

(@)

0.1 f

ICxl, ICyl

0.001 |

0.0001
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of the autocorrelation functions faf'?, ¢!*?, ¢'*, andc>” P *, !
in the collision number region before the time-oscillation ' HE
0.001.... .. '.3‘...‘?.%“ I“\
0015 1000 2000 3000 4000 5000 6000 7000 8000 9000
001} n
0.005 | _
e E FIG. 21. (Color onling (a) Absolute valuesC,| and |C,| as
[3) 0 functions of the collision number, presented as a log-log plot. The
-0.005 solid line is a fit of the envelope of the time-oscillating partgfto
001 | ; an exponential function. The dotted line is a fit & to a
0015 | ¢ k-exponential functiofEq. (18)] and the dotted broken line is a fit
L] to an exponential function in the region where there is a deviation
Rail IR T from the k-exponential function(b) The time-oscillating part of the
-0.025 1 1 ) ) ) autocorrelation part as a graph of the absolute vilyEas a func-
0 2000 4000 6000 8000 10000 tion of the collision numben; presented as a linear-log plot. The
ng broken line is a fit to a sinusoidal function multiplied by an expo-

nential decay functiofiEq. (17)], and the solid line is its envelope,
FIG. 20. (Color onling The region before the start of the time which is the same as the solid line (8). The system is a quasi-

(20 (39 59

oscillation ofautocorrelationfunctionsfcfo), c.,C 3

one-dimensional system of 50 hard disks witH,P) boundary

as functions of the collision numbey. conditions.
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multiplied by an exponential function, namely, Ed7), with
the fitting parameters.A=~0.0402, B'~0.000 368, T,
~2.03X 10% and¢~1.53 as the broken lines in Fig. @i.
The solid lines in Figs. 2B) and 21b) are the envelope

In this appendix, we discuss two points about the momen€,=.A exp{-'n,} of this function. In order to see its expo-

tum autocorrelation function in the long time interva): The
shape of the envelope of the time oscillationGgp and (i)
The behavior of the autocorrelation functi@) on a much
longer time scale than that shown previously.

nential behavior, we show in Fig. &1 the linear-log plot of
|C,| for the time-oscillating region o€,, in which the expo-
nential decay is represented as a straight line. In this linear-
log plot, the local maximum points d€,| are clearly on a

Figure 21 shows the absolute values of the autocorrelatiostraight line.

functions|C,| and|C,| as functions of the collision numbay

In Sec. IV A we also showed th&l, is nicely fitted to a

in a quasi-one-dimensional system of 50 hard disks withk-exponential functior{18). This is also shown in Fig. 24)
(H,P) boundary conditions. In Fig. 28), these graphs are as the fit line to thex-exponential function with fitting pa-

plotted as log-log plots, while in Fig. 24) the graph folC,|

rameter valuesa”=0.007 46 andx=1.48 (dotted line.

is plotted as a linear-log plot. The collision number intervalHowever, Fig. 21a) shows that there is a deviation from this
in this figure is about ten times as long as the previous onesunctional form on a longer time scale. Such a deviation is

and we took a much longer time averageg., over 18
collisions.

As shown in Sec. IV AC, decays exponentially initially.
After the initial decay, the time-oscillating region &,
starts. We fitted this region o, to a sinusoidal function

significant whem;> 10 000 in this graph. We fitte@, to an
exponential functiorC,=.A" exp{-a"n} with fitting param-
eter valuesA’~0.0369 anda”~6.25x 10°° [the dotted-
broken line in Fig. 2(a)] in the region whereC, deviates
from the k exponential.
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