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The time-dependent mode structure of the Lyapunov vectors associated with the stepwise structure of the
Lyapunov spectra and its relation to the momentum autocorrelation function are discussed in quasi-one-
dimensional many-hard-disk systems. We obtain the complete mode structuressLyapunov modesd for all
components of the Lyapunov vectors, including the longitudinal and transverse components of both the spatial
and momentum parts, and their phase relations. These mode structures are suggested by the form of the
Lyapunov vectors for the zero-Lyapunov exponents. The spatial node structures of these modes are explained
by the reflection properties of the hard walls used in the models. Our main result is that the largest time-
oscillating period of the Lyapunov modes is twice as long as the time-oscillating period of the longitudinal
momentum autocorrelation function. This relation is satisfied irrespective of the number of particles and the
boundary conditions. A simple explanation for this relation is given based on the form of the time-dependent
Lyapunov mode.
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I. INTRODUCTION

Statistical mechanics based on dynamical instability has
drawn considerable attention in recent years. The dynamical
instability is described as a rapid separation of two nearby
trajectories, the so-called Lyapunov vector, and causes a loss
of memory or unpredictability in the dynamical system. The
exponential rate of expansion or contraction of the magni-
tude of the Lyapunov vector is called the Lyapunov expo-
nent, and its positivity, at least for the largest exponent, is a
well known indicator of chaos. Many efforts have been de-
voted to connect the dynamical instability with statistical
properties, such as transport coefficientsf1,2g. Some works
have concentrated on specific effects of the dynamical insta-
bility in many-particle systems. Information about the dy-
namical instability in many-particle systems is given by the
complete set of Lyapunov exponentssthe Lyapunov spec-
trumd and their associated Lyapunov vectors. Here, we intro-
duce the Lyapunov spectrum as the ordered set of the
Lyapunov exponentslsnd ,n=1,2, . . . ,2dN, wherels1dùls2d

ù ¯ ùls2dNd in d-dimensional systems. The structure of the
Lyapunov spectra has been of much interest in many-particle
systems and some of the results obtained have been the con-
jugate pairing rule for the Lyapunov spectra of thermostated
systemsf3–6g, the localized behavior of Lyapunov vectors
f7–11g, and the thermodynamic limit of Lyapunov spectra
f12–15g.

The stepwise structure of the Lyapunov spectra is one of
such chaotic properties of many-particle systems, which was
found recentlyf16g. This stepwise structure appears in the
Lyapunov exponents with smallest absolute value, and the
dynamical structure of these Lyapunov exponents should re-
flect slow and global behavior of the macroscopic system.
Therefore, clarification of the stepwise structure of Lyapunov
spectrasLyapunov stepsd is expected to make a bridge be-
tween the macroscopic statistical theory and microscopic
chaotic dynamics. The Lyapunov steps accompany wavelike

structures in the associated Lyapunov vectorssthe Lyapunov
modesd, which offer a useful tool to understand the origin of
the stepwise structure of the Lyapunov spectrumf17–20g.
Originally, these structures were observed in many-hard-disk
systems, but very recently numerical evidence for the
Lyapunov modes was reported for many-particle systems
with soft-core particle interactionsf21,22g. Some theoretical
arguments have been proposed to explain this phenomenon,
for example, using random matrix theoryf23,24g, kinetic
theory f25–27g, and periodic orbit theoryf15g, etc.

The key to understanding the Lyapunov steps and modes
is in the zero-Lyapunov exponents and their associated
Lyapunov vectors. Using the notationdGsnd=sdqsnd ,dpsndd
=sdqx

snd ,dqy
snd ,dpx

snd ,dpy
sndd for the Lyapunov vector corre-

sponding to Lyapunov exponentlsnd, the Lyapunov vectors
corresponding to the six zero-Lyapunov exponents of a two-
dimensional system ofN hard particles in periodic boundary
conditions can be written as linear combinations of the six
basis vectors N−1/2s1,0,0,0d, N−1/2s0,1,0,0d,
N−1/2s0,0,1,0d, N−1/2s0,0,0,1d, upu−1spx,py,0,0d, and
upu−1s0,0,px,pyd. Here0 is anN-dimensional null vector,1
is an N-dimensional vector with all components equal to 1,
and p;spx,pyd is the momentum vector with itsx compo-
nent px and y componentpy. Here, the firstssecondd basis
vector is associated with the translational invariance in thex
directionsy directiond, the thirdsfourthd basis vector with the
conservation of thex componentsy componentd of the total
momentum, the fifth basis vector with the time-translational
invariancesdeterministic nature of the orbitd, and the last
basis vector with the energy conservationf1g. This
means that the six sets of the Lyapunov vector components
hdxj

sndj j, hdyj
sndj j, hdpxj

sndj j, hdpyj
sndj j, hdxj

snd /pxj ,dyj
snd /pyjj j, and

hdpxj
snd /pxj ,dpyj

snd /pyjj j swhere dxj
snd is the j th component of

dqx
snd, etc.d can have equal components independent of the

particle indexj for the zero-Lyapunov exponent modes.
We regard the degeneracy of the zero-Lyapunov expo-

nents and the structure of the corresponding Lyapunov vec-
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tors as the zeroth Lyapunov step and mode. This scenario
was proposed first in Ref.f18g, and was also discussed very
recently in Ref.f20g. First of all, the Lyapunov steps for the
rectangular two-dimensional system with periodic boundary
conditions consist of two-point steps and four-point steps
f17,18g, namely, the number of Lyapunov exponents for one
set of Lyapunov steps is six, which is equal to the number of
the zero-Lyapunov exponents. It is also known that the step-
wise structure of Lyapunov spectra is changed by violating
the spatial translational invariance and the total momentum
conservation, which also change the number of zero-
Lyapunov exponentsf18g. As a second point, some mode
structures were observed in some of the above Lyapunov
vector components, which should be constant in zero-
Lyapunov exponents. For example, a mode structure in the
Lyapunov vector componentdyj

snd sthe transverse spatial
translational invariance Lyapunov moded is well knownf17g.
This mode is stationary in time, and appears in one of the
two types of the Lyapunov steps. Referencef18g showed
another mode structure indyj

snd /pyj sthe transverse time
translational Lyapunov moded. This mode depends on time,
and appears in other types of the Lyapunov steps. These
Lyapunov modes are enough to categorize all the Lyapunov
steps. Referencesf17,19g also claim a moving mode struc-
ture in dxj

snd.
However, there is not enough evidence yet to confirm the

above scenario for the Lyapunov steps and modes. For ex-
ample, the mode structure in the momentum part of
Lyapunov vectors has not been reported explicitly. Besides,
the phase relations of different modes, for example the
modes indyj

snd /pyj and dxj
snd, have not been discussed. An-

other important problem is the time scale specified by a time-
dependent Lyapunov mode, like the time oscillation for the
mode in dyj

snd /pyj. The time-oscillating period is usually
much longer than the mean free time of the system, and it
should correspond to a collective movement, but quantitative
evidence for it has not been shown clearly.

As an indicator for collective movements of many-
particle systems, we can use the momentum autocorrelation
functions, where collective movement may appear as a time-
oscillation behaviorf28g, as observed in many macroscopic
modelsf29–33g. The autocorrelation functions are accessible
experimentally using neutron and light scattering techniques
f33–36g. An essential aspect of autocorrelation functions is
their role as response functions for the system. For example,
linear-response theory connects the time integral of the auto-
correlation function with a transport coefficientf37g. How-
ever, it should be emphasized that the autocorrelation func-
tions themselves provide much more detailed information
about the system. Linear-response theory requires the time-
integral and the thermodynamic limit of the autocorrelation
function to calculate transport coefficients, and in this pro-
cess information about short time scales and finite-size ef-
fects is lost. For instance, the time oscillation of the autocor-
relation functions is one of the finite-size effects, which
linear-response theory does not treat. Information on short
time scales and finite-size effects in the autocorrelation func-
tions also plays an important role in the generalized hydro-
dynamicsf38g and generalized Fokker-Planck equationf39g.

The purposes of this paper are twofold. First we calculate
all components of the Lyapunov vectors associated with the
stepwise structure of the Lyapunov spectrum. They include
the longitudinal and transverse components of both the spa-
tial and momentum parts of the Lyapunov vectors. We dem-
onstrate the wavelike structures in the components of the
Lyapunov vectors, and specify their phase relations. These
results support the above explanation for the origin of the
Lyapunov steps and modes based on the zero-Lyapunov ex-
ponents and the associated Lyapunov vectors. Spatial node
structures of these Lyapunov modes are explained in terms of
boundary conditions. It is emphasized that some of the
Lyapunov modes show time-oscillating behaviors, and par-
ticle number dependence in their time-oscillating periods.
The second purpose of this paper is to discuss the connection
between the time oscillation of the Lyapunov modes and the
momentum autocorrelation functions. It is shown that the
largest time-oscillating period of the Lyapunov modes is
twice as long as that for a momentum autocorrelation func-
tion. This gives some evidence to connect the Lyapunov
modes, a tangent space property, to the autocorrelation func-
tion, which is a phase-space property that is accessible ex-
perimentally.

As a simple many-particle chaotic model, in this paper we
use a quasi-one-dimensional many-hard-disk systemf11,18g.
This model allows fast numerical calculation of the
Lyapunov exponents and vectors, and shows clear Lyapunov
steps and modes. These features of this model are advanta-
geous to the aim of this paper, because in general the numeri-
cal calculation of the Lyapunov spectrum and vectors is very
time-consuming, and it is often difficult to get clear
Lyapunov mode structures, particularly for time-dependent
Lyapunov modes. Besides, if the above picture of the
Lyapunov steps and modes based on universal properties
such as the translational invariances and the conservation
laws can be justified, then such a simple model should be
sufficient to convince us of their origin. This system also
exhibits a clear oscillatory behavior in the longitudinal mo-
mentum autocorrelation function. Another useful technique
to get clear Lyapunov steps and modes is to use hard-wall
boundary conditions. Although hard-wall boundary condi-
tions destroy the spatial translational invariance and the total
momentum conservation, and lead to different structure in
the Lyapunov spectrum compared to periodic boundary con-
ditions, it has been shown that there is a simple relation
between the observed Lyapunov steps and modes and differ-
ent boundary conditionsf18g. Specifically, we use a quasi-
one-dimensional system with hard-wall boundary conditions
in the longitudinal direction and periodic boundary condi-
tions in the transverse direction. Usually, the hard-wall
boundary conditions make numerical calculation slower
compared to periodic boundary conditions, but in our system
only the two particles at each end of the system collide with
the hard walls, so the effect is small.

The outline of this paper is as follows. In Sec. II, the
quasi-one-dimensional system is introduced. In Sec. III, we
discuss the Lyapunov steps and modes. In Sec. IV, the mo-
mentum autocorrelation functions and their relation with the
Lyapunov modes are discussed. Finally, we give some con-
clusion and remarks in Sec. V.
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II. QUASI-ONE-DIMENSIONAL SYSTEM

The model considered in this paper is a quasi-one-
dimensional many-hard-disk system. It is a two-dimensional
rectangular system consisting of many hard disks with the
width of the system so narrow that the disk positions are not
exchanged, thus the disks can be numbered from left to right.
We assume that the massm and the radiusR of each disk is
the same. In this case, the quasi-one-dimensional system has
a widthLy that satisfies the condition 2R,Ly,4R. Figure 1
gives a schematic illustration of the quasi-one-dimensional
system with the particles numbered1,2, . . . ,N sN is the par-
ticle numberd from the left to right.

Originally, the quasi-one-dimensional many-hard-disk
system was introduced as a system to easily and clearly ob-
serve the stepwise structure of the Lyapunov spectrum and
the corresponding wavelike structure of Lyapunov vectors
f18g. Numerical observation of the Lyapunov steps and
modes is very time-consuming, and even at present the
Lyapunov spectrum is limited to about 1000 particlesf17g.
Therefore, it is valuable to explore fast and efficient ways to
calculate them numerically. It is well known that the rectan-
gular system has a wider stepwise region than a square sys-
tem with the same area and number of particles. This quasi-
one-dimensional system is the most rectangular two-
dimensional system possible. Referencef18g demonstrated
that in the quasi-one-dimensional system we can clearly ob-
serve the structure of the Lyapunov modes. It is known that
there are two kinds of Lyapunov modes: stationary modes
and time-dependent modes. The stationary Lyapunov modes
are most easily observed because of their stable structure, but
generally the observation of the time-dependent Lyapunov
modes is much harder because of large fluctuations in their
structure and their intrinsic time dependence. The quasi-one-
dimensional system is the first system in which time-
oscillating Lyapunov modes were demonstratedf18g.

Another advantage of the quasi-one-dimensional system
is that the particle interactions in this system are restricted to
nearest-neighbor particles only, so we need much less effort
to find colliding particle pairs numerically compared with the
fully two-dimensional system in which each particle can col-
lide with any other particle. This leads to faster numerical
calculation of the system dynamics. Besides, in this system,
particle movement in the narrow direction is suppressed,
compared to the longitudinal direction, and roughly speaking

the particle sequence corresponds to the particle position.
This leads to a much simpler representation of Lyapunov
modes, which must be investigated as functions of spatial
coordinates and time. One may also notice that in the quasi-
one-dimensional system, the system size is proportional to
the particle numberN, while for the square system it is pro-
portional to ÎN. This implies that in the quasi-one-
dimensional system, many-particle effects are more evident
than for the fully two-dimensional systems with the same
number of particles.

Another important point in the quasi-one-dimensional
system is the effect of boundary conditions. Different from
the square system, in which the boundary length is propor-
tional to the square root of the system size, in the quasi-one-
dimensional system the boundary length is proportional to
the system size itself, therefore we cannot neglect its effect
even in the thermodynamic limit. Actually, Ref.f18g showed
that the Lyapunov steps and modes depend strongly on
boundary conditions. Boundary conditions change not only
the structure of Lyapunov steps and modes, but also the
clearness of Lyapunov mode structure. For example, a sys-
tem with purely hard-wall boundary conditions has no sta-
tionary Lyapunov mode and its corresponding Lyapunov
steps and shows much clearer time-oscillating Lyapunov
modes, compared to a system with periodic boundary condi-
tions. Roughly speaking, hard-wall boundary conditions pin
the positions of the nodes and thus lead to clearer Lyapunov
modes. On the other hand, the numerical calculation with the
hard-wall boundary conditions is more time-consuming. This
disadvantage is significant in the quasi-one-dimensional sys-
tem with purely hard-wall boundary conditions. As another
disadvantage of the system with purely hard-wall boundary
conditions, we cannot investigate the stationary Lyapunov
mode due to spatial translational invariance. As an optimal
system, in this paper we mostly consider a quasi-one-
dimensional system with hard-wall boundary conditions in
the longitudinal direction and periodic boundary conditions
in the transverse direction. We use the notationsH,Pd for this
boundary condition throughout this paper. In Fig. 1, we rep-
resent the boundary conditionsH,Pd as different types of
lines on the boundaries: the bold solid lines signify hard-wall
boundary conditions and the broken lines signify periodic
boundary conditions.

Although the quasi-one-dimensional many-hard-disk sys-
tem with the boundary conditionsH,Pd may be artificially
introduced to investigate Lyapunov steps and modes in a fast
and effective way, it is essential to note that the results from
this system can be used to predict Lyapunov steps and modes
in more general systems, such as a fully two-dimensional
system with purely periodic boundary conditions. Details of
the relation of the Lyapunov steps and modes in quasi-one-
dimensional systems with different boundary conditions
were given in Ref.f18g. For example, the step widths of the
Lyapunov spectrumsthe spatial and time periods of the cor-
responding Lyapunov modesd in the system with the bound-
ary conditionsH,Pd are halvesstwiced the ones in the system
with the purely periodic boundary conditionssP,Pd. It is also
known that the structure of Lyapunov steps for the quasi-
one-dimensional system is the same as the fully two-
dimensional rectangular system.

FIG. 1. A schematic illustration of the quasi-one-dimensional
system. The system shape is so narrow that particles always remain
in the same order. Here,LxsLyd is the lengthswidthd of the system in
the longitudinalstransversed direction, andR is the radius of a par-
ticle. The solid lines represent hard-wall boundary conditionssHd,
and the dashed lines represent periodic boundary conditionssPd,
representing the boundary conditionsH,Pd. The particles are num-
bered1,2, . . . ,N from the left to the right.
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As we discussed above, the main reason to use the quasi-
one-dimensional system with the boundary conditionsH,Pd
is to get clear Lyapunov steps and modes in a fast numerical
calculation. On the other hand, these advantages may not
assist the calculation of the momentum autocorrelation func-
tion. In the quasi-one-dimensional system, collisions of a
particle are restricted to its two nearest-neighbor particles
only, so it may be supposed that specific types of collisions
like the “backscattering effect” play an important role. The
backscattering effect, which comes from a reversal of the
velocity of a particle by a collision with the nearest-neighbor
particle, can lead to a negative region of the momentum au-
tocorrelation function. One may also suppose that in the
quasi-one-dimensional system, a collective motion may be
enhanced, because the movement of particles in the narrow
direction is very restricted. This may lead to a clear time
oscillation of the momentum autocorrelation function, as will
be observed in Sec. IV. It may also be noted that boundary
condition effects on the momentum autocorrelation function
are not well known. Because we need to know about them to
be able to guess the relation between the autocorrelation
functions and Lyapunov modes in different boundary condi-
tions, we will discuss the boundary condition effects on the
momentum autocorrelation function briefly in Sec. IV C.

In this paper, we use units where the massm and the
particle radiusR are 1, and the total energyE is N sexcept in
Sec. III Dd. For the numerical calculations, the system
lengths are chosen asLx=1.5NLy+2R and Ly=2Rs1+10−6d
for the quasi-one-dimensional system with the boundary con-

dition sH,Pd. The density isr=NpR2/ V̄, whereV̄ is the vol-
ume accessible to the center of the particle.

III. LYAPUNOV STEPS AND MODES

In this section, we discuss the Lyapunov steps and modes
in the quasi-one-dimensional system with boundary condi-
tion sH,Pd. Part of these results have already been presented

in Ref. f18g, and here we complete this presentation. Some of
the discussions omitted in Ref.f18g were the relation be-
tween the time-oscillating Lyapunov mode proportional to
the momentum and the longitudinal Lyapunov modes, the
Lyapunov modes for the momentum parts of Lyapunov vec-
tors, and the particle number dependence of the time-
oscillating period of the Lyapunov modes.

For a numerical calculation of the Lyapunov spectrum and
the Lyapunov vectors, we used the numerical algorithm de-
veloped by Benettinet al. f40g and Shimadaet al. f41g salso
see Refs.f42,43gd. This algorithm is characterized by regular
reorthogonalizations and renormalization of the set of
Lyapunov vectors, which is done after each particle collision.
Usually the Lyapunov steps and modes appear after a long
trajectory calculation, and we typically calculated trajectories
of more than 53105 particle collisions to get the Lyapunov
spectra and vectors. Typically, the zero-Lyapunov exponents
converge first, followed by the next smallest exponents, with
the higher steps being last to converge.

The main purpose of this section is to investigate the
time-oscillating structures in the longitudinal momentum

FIG. 2. Stepwise structure of the Lyapunov spectrum normal-
ized by the largest Lyapunov exponent for the quasi-one-
dimensional system withN=100 andsH,Pd boundary conditions.
The white-filled sblack-filledd circles correspond to the stational
stime-oscillatingd Lyapunov modes. Inset: The full spectrum of the
positive branch of the normalized Lyapunov spectrum. Note that the
step structure dissolves at about exponent number 160 so this effect
is only seen in the slowest modes.

FIG. 3. sColor onlined Local time averages ofkdxjlt and kdyjlt

for the first two-point stepsexponent 198d in sad, and for the second
two-point stepsexponent 195d in sbd. These are shown as functions
of the collision numbernt and the normalized local time average
kxjlt /Lx of the x component of thej th particles positionswith the
system lengthLxd. The corresponding Lyapunov exponentsls198d

and ls195d are indicated by arrows in Fig. 2. On the base of each
graph are the contour plots of the transverse Lyapunov modes at the
levels −0.08sdotted linesd, 0 ssolid linesd, and +0.08sbroken linesd.
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proportional Lyapunov modes. We present results for 100-
particle systems, and in such small systems the structure of
the Lyapunov modes has large fluctuations in space and time
which can obscure the appearance of clear mode structures.
Another problem appears for the Lyapunov modes that are
proportional to the momentum. We investigate these modes
by calculating such quantities asdxj

snd /pxj, which should
show a time-oscillating wavelike structure, if the Lyapunov
vector components have modes proportional to momentum.
However, fluctuations of this quantity may be enhanced in
cases when the momentum component is close to zero. To
overcome these technical problems, and to visualize this
structure as clearly as possible, we take a local time average
of the Lyapunov modes. More concretely, for the Lyapunov
vector componentsdxj

snd and dyj
snd, we take their arithmetic

average over 8N collisions using data just after collisions,
and plot them as functions of the same local time average of
xj and the first collision number of time interval. For modes
in the quantitiesdxj

snd /pxj, dyj
snd /pyj, dpyj

snd /pxj, anddpyj
snd /pyj,

we take the same local time average, except that if the abso-
lute valueupxju supyjud is less than 10% of the averaged mo-
mentum amplitudeÎ2mE/N, then we exclude the data at that
time from the local time average. We use the notationk¯lt

for such a local time average.

A. Lyapunov steps

Figure 2 is the stepwise structure of the Lyapunov spec-
trum normalized by the largest Lyapunov exponent for the
quasi-one-dimensional many-hard-disk system of 100 par-

ticles with sH,Pd boundary condition. The entire positive
branch of the Lyapunov spectrum is shown in the inset to this
figure. In a Hamiltonian system, the negative branch of the
Lyapunov spectrum takes the same absolute value as the
positive branch of the Lyapunov spectrum from the conju-
gate pairing rule:ls4N−n+1d=−lsnd, n=1,2, . . . ,2N f44g, so
they are omitted in Fig. 2.

This system has four zero-Lyapunov exponents, which
come from the conservation of they component of the total
momentum and the center of mass, energy conservation, and
the deterministic nature of the orbit. Note that thex compo-
nent of the total momentum and the center of mass are not
conserved, because of the hard-wall boundary condition in
the x direction. Exponents number 199, 200, 201, and 202
are zero in Fig. 2.

The stepwise structure of the Lyapunov spectrum in this
system consists of one- and two-point steps. These two kinds
of Lyapunov steps accompany different mode structures in
the Lyapunov vectors: one is the stationary modes, as dis-
cussed in Sec. III B, and the other is time-oscillating modes,
as discussed in Sec. III C. Here we count the sequence of
Lyapunov steps from the zero-Lyapunov exponentsls200d and
ls199d, sols198d is the first one-point step,ls197d andls196d are
the first two-point step,ls195d is the second one-point step,
andls194d andls193d are the second two-point step, see Fig. 2.

B. Stationary Lyapunov modes

First we discuss the Lyapunov mode corresponding to the
first and second one-point steps in Fig. 2. Figure 3 shows the

FIG. 4. sColor onlined Local time averages ofkdxjlt, kdxj /pxjlt, kdyjlt, andkdyj /pyjlt for the Lyapunov modes corresponding to the first
exponent of the first two-point stepsls197dd, as functions of the collision numbernt and the normalized local time averagekxjlt /Lx of the x
component of the position of thej th particle. The base of each graph is a contour plot of the three-dimensional graph at the levels −0.08
sdotted linesd, 0 ssolid linesd, and +0.08sbroken linesd.
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graph of the Lyapunov vector components corresponding to
the first and second one-point step as a function of the col-
lision number nt and the normalized local time average
kxjlt /Lx of the x component of the particle position. Here,
Fig. 3sad is for the local time averages ofkdxj

s198dlt and
kdyj

s198dlt for the first one-point stepls198d, and Fig. 3sbd is a
similar graph for the second one-point stepls195d. These one-
point steps are indicated by arrows in Fig. 2. Both graphs
have the same collision number intervalf524000,569600g.
On the base of each of Figs. 3sad and 3sbd, we give contour
plots of the transversal modeskdyj

s198dlt andkdyj
s195dlt, respec-

tively, in which the dotted lines, the solid lines, and the bro-
ken lines correspond to the levels −0.08, 0, and +0.08, re-
spectively.

In Fig. 3, we recognize spatial wavelike structures in the
transverse components ofkdyj

sndlt for n=198 and 195, which
are stationary in timesat least in a time interval of more than
453103 collisions as shown in this figured. These wavelike
structures are very nicely fitted by sinusoidal functionsf18g.
Note that the numerical algorithm ensures that the Lyapunov
vectors are normalized, so that the amplitudes of any com-
ponent of the Lyapunov vector must be less than 1. It should
be emphasized that antinodes in the modes appear at the end
of the system in thex direction. By comparison, the ampli-
tudes of the longitudinal components ofkdxj

sndlt for n=198
and 195 are extremely small. These observations suggest that
the Lyapunov mode corresponding to thekth one-point
Lyapunov step is approximately represented by

FIG. 5. sColor onlined Contour plots of the local time averages ofkdxjlt, kdxj /pxjlt, kdyj /pyjlt, for the first two-point stepsfls197d sa,c,ed
andls196d sb,d,fdg, as functions of the collision numbernt and the normalized local time averagekxjlt /Lx of the position of thej th particle
in the same collision number intervalf535200, 569600g. The dotted lines, the solid lines, and the broken lines are contour lines at the levels
−0.08, 0, and +0.08, respectively.
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Sdxj
smskdd

dyj
smskdd D = akS0

1
DcosSpk

Lx
xjD , s1d

whereak is a constant andmskd is the Lyapunov index cor-
responding to thekth one-point step of the Lyapunov spec-
trum. Here we take the origin of thex component of the
spatial coordinate to bexj =0, so that an ambiguity in spatial
phase can be removed in Eq.s1d.

C. Time-oscillating Lyapunov modes

Now we discuss the remaining Lyapunov modes, which
correspond to the two-point steps of the Lyapunov spectrum.
Figure 4 shows the graphs of the local time averages of
kdxj

s197dlt, kdxj
s197d /pxjlt, kdyj

s197dlt, and kdyj
s197d /pyjlt as func-

tions of the collision numbernt and normalized local time-
averaged positionkxjlt /Lx of the j th particle. The number of
particles isN=100, and the four graphs are for the same
collision number intervalntP f535200,569600g. These cor-
respond to the first exponent of the first two-point step, ex-
ponent 197.

We can easily recognize spatial wavelike structures with
time oscillations in Figs. 4sad and 4sdd. In Fig. 4sad, the lon-
gitudinal Lyapunov vector componentkdxj

s197dlt has nodes at
the ends of the quasi-one-dimensional system, and the wave-
length is given by 2Lx. On the other hand, in Fig. 4sdd, the
transverse Lyapunov vector componentkdyj

s197d /pyjlt has an-
tinodes at the end of the system and has a node at the middle,
although its wavelength is given by 2Lx as for the longitudi-
nal mode of Fig. 4sad.

There is also a time-oscillating wavelike structure in the
longitudinal Lyapunov vector componentkdxj

s197d /pxjlt, as
shown in Fig. 4sbd. This structure is different from the one
shown in Fig. 4sad associated with the same longitudinal
Lyapunov vector componentdxj

s197d. It has antinodes at the
ends of the system, and has a node in the middle. Its wave-
length is 2Lx. These characteristics suggest that although
there are large fluctuations in the middle of the system, the

time-oscillating wavelike structure in Fig. 4sbd is the same as
that in Fig. 4sdd. In Fig. 4scd, it is rather difficult to recognize
any structure. Roughly speaking, it is just random fluctua-
tions, but the amplitude of such fluctuations in the middle of
the system is small compared to the region at the end of the
system. However, such small-amplitude fluctuations are re-
quired for consistency with Fig. 4sdd, namely, the fact that in
this region the value ofdyj

s197d /pyj is small, so the value of
dyj

s197d itself should be small with an almost position-
independent momentumpyj.

Next we discuss the phase relations for the Lyapunov
modes of the first two-point steps, corresponding to expo-
nentsls196d andls197d sthe black-filled circles with brace un-
derneath in Fig. 2d. Figure 5 shows the contour plots of the
local time averages ofkdxjlt, kdxj /pxjlt, kdyj /pyjlt, and for
ls196d and ls197d as functions of the collision numbernt and
the normalized local time averagekxjlt /Lx of the position of
the j th particle for a 100-particle system. The six graphs in
Fig. 5 have the same collision number intervalf535200,
569600g, and Figs. 5sad, 5scd, and 5sed correspond to Figs.
4sad, 4sbd, and 4sdd

Figure 5 shows that the two Lyapunov exponents for the
same two-point step have the same structure of Lyapunov
modes, but they are orthogonal in time, namely, nodal lines
of the Lyapunov modes corresponding to the exponentls197d

correspond to antinodal lines of exponentls196d. We also no-
tice that the nodal lines of the Lyapunov modes inkdxj

snd /pxjlt

and kdyj
snd /pyjlt coincide with each other in space and time

sn=197,196d, on the other hand the Lyapunov modes in
kdxj

sndlt and kdxj
snd /pxjlt are orthogonal in space and time at

the same Lyapunov index.
The above discussions based on Figs. 4 and 5sand similar

observations of Lyapunov modes in the other two-point steps
of the Lyapunov spectrumd lead to the conjecture that the
spatial part of Lyapunov vector componentsdxj

snskdd and
dyj

snskd−1d corresponding to the Lyapunov exponents of thekth
two-point step are approximately expressed as

Sdxj
snskdd

dyj
snskdd D = ak8Spxj

pyj
DcosSpk

Lx
xjDcosS2pk

TLya
nt + bk8D + ãk8S1

0
DsinSpk

Lx
xjDsinS2pk

TLya
nt + bk8D , s2d

Sdxj
snskd−1d

dyj
snskd−1d D = ak9Spxj

pyj
DcosSpk

Lx
xjDsinS2pk

TLya
nt + bk8D + ãk9S1

0
DsinSpk

Lx
xjDcosS2pk

TLya
nt + bk8D , s3d

with ak8, ak9, ãk8, ãk9, andbk8 constants. It should be noted that
large fluctuations in the Lyapunov mode represented in the
middle of Figs. 4sbd, 5scd, and 5sdd, can come from thex
components of the second terms on the right-hand sides of
the vectorss2d ands3d. On the other hand, the effect of thex
components of the first terms on the right-hand side of the
vectorss2d and s3d does not appear explicitly in Figs. 4sad,

5sad, and 5sbd, because the factorpxj in these terms distrib-
utes their contributions randomly and these terms disappear
after taking local time averages.

D. Energy dependence of Lyapunov mode amplitudes

In expressions s2d and s3d for the time-oscillating
Lyapunov modes, the quantitiesak8, ak9, ãk8, andãk9 are intro-
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duced simply as coefficients of the linear combination of the
longitudinal spatial translational invariance Lyapunov mode
and the time translational invariance Lyapunov mode. How-
ever, it is important to note that these coefficients are related
to each other through the normalization of the Lyapunov
mode.

As the Lyapunov mode vector is normalizable, this leads
to the approximate relations

uak8u <
uãk8u

Î2mE/N
, s4d

uak8u < uak9u, s5d

uãk8u < uãk9u, s6d

with the massm s=1d, the total energyE, and the number of
particlesN.

In Fig. 6, we show the amplitudesua18u anduã18u, which are
obtained by fitting the Lyapunov modeskdxj

s2N−3dlt,
kdxj

s2N−3d /pxjlt, and kdyj
s2N−3d /pyjlt to sinusoidal functions

multiplied by constants, as functions of 1/Î2mE/N. Here we
used a quasi-one-dimensional system of 50 hard disks with
sH,Pd boundary conditions, and calculated the amplitudes
ua18u anduã18u for different total energiesE. In Fig. 6, we fitted
the amplitudeuã18u for the modekdxj

s2N−3dlt scirclesd to a con-
stant functionuã18u=j sthe broken lined with a fitting param-
eter valuej<0.179, and the solid line is given by the linear
functionj /Î2mE/N of 1/Î2mE/N using this value ofj. The
amplitudesua18u for the modeskdxj

s2N−3d /pxjlt strianglesd and
kdyj

s2N−3d /pyjlt ssquaresd are reasonably on this linear
line j /Î2mE/N, and these results support the relation Eq.
s4d, and also suggest that the amplitudeuãk8u for the mode
kdxj

s2N−3dlt is independent of 1/Î2mE/N. The amplitudesuak8u
for kdxj

s2N−3d /pxjlt strianglesd and kdyj
s2N−3d /pyjlt ssquaresd in

Fig. 6 almost coincide with each other, and this gives support
to the claim that the coefficientsak8 on thex component and
the y component of the first term on the right-hand side of
Eq. s2d coincide.

In the above argument, we assumed the normalizability of
the spatial part only of the Lyapunov vectors. This can be
justified by the fact that, as shown in Sec. III F, the spatial
part and momentum part of Lyapunov vector modes show
almost the same mode structure, so each of them should be
independently normalizable.

E. Spatial node structures of the Lyapunov modes and
reflections at hard walls

The spatial node structure of the Lyapunov modes can be
explained using the collision rule for particles with hard
walls. ForsH,Pd boundary conditions, the particle collisions
with the hard walls in thex direction cause a change in the
sign of thex component of the momentum with the remain-
ing components of the phase-space vector unchanged,

xj → xj , s7d

yj → yj , s8d

pxj → − pxj, s9d

pyj → pyj. s10d

Similarly, in this type of collision, thex components of the
Lyapunov vector change their signs while the remaining
components are unchanged,

dxj → − dxj , s11d

dyj → dyj , s12d

dpxj → − dpxj, s13d

dpyj → dpyj. s14d

Note that thex components of Lyapunov vectordxj change
sign as well asdpxj, which is different from the phase-space
vector.

The important point is that a system with hard-wall
boundaries is equivalent to an infinite system generated by
reflecting the positions and velocities of all particlessin the
hard walld and by changing the signs of allx components of
the Lyapunov vectors at the hard wall. That is explicitly in-
corporating the reflection symmetries for the phase-space
vector and the Lyapunov vector at hard walls. If the modes
of the entire system are smoothly connected sinusoidal func-
tions at the hard walls, then this condition requires that the
mode for the quantitydxj has a node at a hard wall, because
it changes sign there. On the other hand, the quantities
dxj /pxj and dyj /pyj do not change their signs at hard walls,
so these modes should have antinodes at hard walls. These
results explain the spatial node structures shown in Fig. 5.
The spatial node structure of the stationary Lyapunov modes
in dyj corresponding to the one-point steps can be explained

FIG. 6. Amplitudesua18u and uã18u of Lyapunov modeskdxj
s2N−3dlt

scirclesd, kdxj
s2N−3d /pxjlt strianglesd, andkdyj

s2N−3d /pyjlt ssquaresd as
functions of 1/Î2mE/N in the quasi-one-dimensional system of 50
hard disks withsH,Pd boundary condition. The broken line is a fit of
the amplitudeuã18u to a constant functionuã18u=j with a fitting pa-
rameter j, and the solid line is given by a linear function
j /Î2mE/N.
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in this way. Becausedyj varies sinusoidally and must satisfy
the reflection symmetry, it must be either a nodesif the sign
changesd or an antinodesif the sign is invariantd. Hence, in
this case the Lyapunov mode indyj should have an antinode
at the hard walls.

F. Lyapunov modes in momentum components of
Lyapunov vectors

So far, we have discussed only the spatial components of
the Lyapunov vectors. In this subsection, we discuss briefly
the Lyapunov modes appearing in the momentum parts of
Lyapunov vectors.

One of the few differences between spatial and momen-
tum components of Lyapunov vectors is that the amplitudes
of the momentum components are often much smaller than
those of the corresponding spatial componentsf11g. This
makes Lyapunov modes for the momentum parts of the
Lyapunov vectors less clear than the corresponding spatial
components. However, basically the structure of the
Lyapunov mode for the momentum part of the Lyapunov
vector is quite similar to the corresponding spatial compo-
nent. For this reason, in this subsection we omit a detailed
discussion of the phase relations of multiple Lyapunov
modes for the momentum parts of Lyapunov vectors, and
just show that there are certain mode structures in the mo-
mentum components of Lyapunov vectors corresponding to
the Lyapunov steps.

Figure 7 shows the mode structure ofdpyj
snd corresponding

to the first three one-point stepssn=198, 195, and 192d as
functions of the normalized particle positions forN=100.
This structure is stationary in time, so we took their global
time average over 200N collisions, using the notationk¯l
for this global time average without the suffixt. These modes
are similar to the ones for the corresponding spatial partdyj

snd

discussed in Sec. III B.
Figure 8 shows contour plots of time-oscillating

Lyapunov modes for kdpxj
s197dlt, kdpxj

s197d /pxjlt, and

kdpyj
s197d /pyjlt as functions of the collision numbernt and the

normalized local time averagekxjlt /Lx in the first two-point
step. We used the same collision number intervalf535200,
569600g in Fig. 8 as in Fig. 5. The mode structures in
Figs. 8sad–8scd are almost the same as Figs. 5sad, 5scd, and
5sed for the corresponding spatial componentskdxj

s197dlt,
kdxj

s197d /pxjlt, and kdyj
s197d /pyjlt, respectively, although their

oscillating amplitudes are much smaller than those of the
corresponding spatial components.

The spatial mode structures of the momentum compo-
nents of Lyapunov vectors are explained by the same reflec-

FIG. 7. Global time averageskdpyj
sndl for the Lyapunov expo-

nents corresponding to the first, second, and third one-point step of
the Lyapunov spectrumfn=198 scirclesd, 195 strianglesd, and 192
ssquaresdg as functions of the normalized global time average
kxjl /Lx of the position of thej th particle.

FIG. 8. sColor onlined Contour plots of the local time averages
of kdpxjlt, kdpxj /pxjlt, andkdpyj /pyjlt for the first exponents197d of
the first two-point step as a function of the collision numbernt and
the normalized position of thej th particlesin the collision number
intervalf535200, 569600gd. The dotted lines, solid lines, and broken
lines are contour lines at the levels −0.0018, 0, and +0.0018,
respectively.
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tion property at hard walls, which was discussed in the pre-
vious Sec. III E.

G. Particle number dependence of the oscillating periods

In Sec. III C, we showed that the quantitieskdxj
sndlt,

kdxj
snd /pxjlt, and kdyj

snd /pyjlt corresponding to the two-point
Lyapunov steps show time-oscillating behavior. Now we
consider how the time-oscillating period of those Lyapunov
modes depends on the number of particlesN at fixed density.

We evaluate the collision number interval for the time
oscillation of Lyapunov modes as follows. As shown in the
proceeding Sec. III C, the Lyapunov modes related to the
quantity kdxj

sndlt sthe quantitieskdxj
snd /pxjlt and kdyj

snd /pyjltd
have an antinode in the middlesat the endd of the system in
thex directionsn=2N−3 and 2N−4d for the sH,Pd boundary
condition. Using this property, we took six data points for the
quantity kdxj

sndlt sthe quantitieskdxj
snd /pxjlt and kdyj

snd /pyjltd
sn=2N−3d in the middlesat the endd of the system with the
sH,Pd boundary condition. These data are fitted to a sinu-
soidal functiona sinhs2pnt /TLyad+bj of nt with fitting pa-
rametersa, b, andTLya, which leads to a numerical estima-
tion of the period TLya of the time oscillation of the
Lyapunov modes. The collision number intervalTLya can be
translated into a real time interval by multiplying by the
mean free timet.

Figure 9 is the graph of the periodTLya of the time oscil-
lations of kdxj

s197dlt scirclesd, kdxj
s197d /pxjlt strianglesd, and

kdyj
s197d /pyjlt ssquaresd in the quasi-one-dimensional system

with the sH,Pd boundary condition, as functions of the num-
ber of particlesN. Spatial and temporal behavior of these
quantities has already been shown in Figs. 4sad, 4sbd, and
4sdd for N=100. Figure 9 shows that the three time
oscillations associated withkdxj

s197dlt, kdxj
s197d /pxjlt, and

kdyj
s197d /pyjlt all have the same period. In Fig. 9, the data are

fitted to a quadratic functionTLya=a+bN2 with the fitting
parameter valuesa<17.9 andb<1.65. The inset to this
figure shows the mean free timet as a function of the num-
ber of particlesN. TheN dependence oft is nicely fitted to
the functiont=g /N, whereg<1.91. Noting that the period,
in real time, is approximately given bytTLya, these results
suggest that the period of the Lyapunov modes is almost
proportional to the number of particlesN.

Now, we investigate the time-oscillating period of the
Lyapunov modes in a different way. Figure 10 shows the

quantityLx/ stT̄Lyad using the system lengthLx, the mean free

time t, and the averaged time-oscillating periodstT̄Lya of the
Lyapunov modes in kdxj

s2N−3dlt, kdxj
s2N−3d /pxjlt, and

kdyj
s2N−3d /pyjlt in the first two-point step of the Lyapunov

spectrum. This figure suggests that this quantity is almost 1,
that is, independent of the particle numberN, therefore equal
to thex component of the thermal velocityÎE/ smNd.

IV. AUTOCORRELATION FUNCTIONS

In this section, we discuss another property of the quasi-
one-dimensional system, namely, the time-oscillation behav-
ior of the momentum autocorrelation function. This is a typi-
cal measure of the collective behavior of many-particle
systems. We connect this behavior with the time-oscillating
behavior of the Lyapunov modes, suggesting that the time
oscillation of the Lyapunov modes can also be regarded as a
collective mode.

We calculate the autocorrelation functionsChstd for theh
componentsh=x or yd of the momentum using the normal-

ized expressionChstd; C̃hstd / C̃hs0d, in which C̃hstd is de-
fined by

FIG. 9. Particle numbersNd dependence of the periodTLya of
the time oscillations ofkdxj

s2N−3dlt scirclesd, kdxj
s2N−3d /pxjlt stri-

anglesd, and kdyj
s2N−3d /pyjlt ssquaresd in the quasi-one-dimensional

system withsH,Pd boundary condition. The data are fitted to the
function TLya=a+bN2 with the fitting parametersa and b. The
inset: Particle number dependence of the mean free timet with a
fitting function t=g /N with the fitting parameterg.

FIG. 10. The quantityLx/ stT̄Lyad as a function of the number of

particlesN. Here,T̄Lya is the collision number interval given by the
average of the three collision number intervalsTLya for time oscil-
lations of the Lyapunov vector componentskdxj

s2N−3dlt,
kdxj

s2N−3d /pxjlt, andkdyj
s2N−3d /pyjlt in the first two-point step of the

Lyapunov spectra. The line is given byLx/ stT̄Lyad=1, which is the
x component of the thermal velocityÎE/ smNd.
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C̃hstd ; lim
T→+`

1

sN2 − N1 + 1dT o
j=N1

N2 E
0

T

dsph jss+ tdph jssd.

s15d

Equations15d includes a time average and an average over
some of the particlessfrom the N1th particle to theN2th
particled in the middle of the system.sNote that the particles
are numbered1,2, . . . ,N from left to right in the system, as
shown in Fig. 1.d In actual calculations, we chooseN1=fsN
+1d /2g−5 andN2=fsN+1d /2g+5 with fxg as the integer part
of the real numberx. This means that we take into account
only 11 particles in the middle of the system in the calcula-
tion of the autocorrelation functionChstd. sIn this paper, we
consider the caseNù40.11.d It should be noted that using
the sH,Pd boundary condition, the autocorrelation function
for particles near hard walls is different from the ones for
particles in the middle of the system, as discussed in Appen-
dix A. Especially, the momentum autocorrelation function of
particles near hard walls does not show clear time-oscillating
behavior. To get the clearest time-oscillating behavior for the
autocorrelation functionChstd and to get fewer hard-wall
boundary condition effects, we exclude the autocorrelation
functions of particles near hard walls in the calculation of
Chstd.

If the system is ergodic, the value of the autocorrelation
function s15d will be independent of the initial condition. To
get the results for the autocorrelation function, in this section
we take a time average of the autocorrelation function over
more than 23106 collisions. In the figures, the auto-
correlation functions are shown as functions of the collision
numbernt.

A. Momentum autocorrelation functions and their
direction dependence

Figure 11 contains the momentum autocorrelation func-

tions Cx andCy for the momentum components in thex and
y directions, respectively, as a function of the collision num-
ber nt in the quasi-one-dimensional system withN=100 and
sH,Pd boundary condition. The main figure in Fig. 11 is a
linear-linear plot of the autocorrelation functionsCx andCy,
while its inset is a log-log plot of the graph of the absolute
values uCxu and uCyu. In this system, the mean free time is
given byt<0.0188. From Fig. 11 it is clear that the momen-
tum autocorrelation function has a strong direction depen-
dence and shows a time-oscillating behavior inCx.

Initially, the autocorrelation functionCx decays exponen-
tially with time. To show this point, in the inset to Fig. 11 we
fitted the initial part ofuCxu to an exponential function

G1sntd ; exph− a8ntj, s16d

with the fitting parameter valuea8<0.0385.
The significant point about the autocorrelation functionCx

is its time-oscillating behavior. To show this behavior explic-
itly, we show Fig. 12 as an enlarged graph of the time-
oscillating part ofCx, which is already shown in Fig. 11. This
time oscillation accompanies a time decay, so we fitted this
graph to the product of a sinusoidal and an exponential func-
tion G2sntd, namely,

G2sntd ; Ae−b8nt sinS 2p

Tacf
nt + jD , s17d

with fitting parametersA, b8, Tacf, and j. The time-
oscillating part of the autocorrelation functionCx is nicely
fitted to this function with the parameter valuesA<0.0209,
b8<5.17310−5, Tacf<8.293103, and j<1.62. This also
gives us a way of numerically evaluating the oscillation pe-
riod Tacf of the autocorrelation functionCx. We note that the
quasi-one-dimensional system shows a much clearer time-
oscillating behavior of the momentum autocorrelation func-
tion than a fully two-sor three-d dimensional system. One
may ask whether the damping behavior of the envelope of
time oscillation ofCx is best fitted to a power-law function,
like the slow damping of the long time behavior ofCy, rather
than to an exponential function as assumed in Eq.s17d. sAc-

FIG. 11. sColor onlined The autocorrelation functionCx andCy

for thex andy components of momentum, respectively, as functions
of the collision numbernt. Main figure: Linear-linear plots ofCx

andCy as functions ofnt. The inset: Log-log plots of the absolute
valuesuCxu and uCyu as functions ofnt. Here, the broken line is a fit
of the graph ofuCxu to an exponential function, and the line is a fit
of the graph ofuCyu to a k-exponential functionfdefined by Eq.
s18dg.

FIG. 12. sColor onlined The time-oscillating part of autocorrela-
tion functionCx for thex component of momentum as functions of
the collision numbernt. Here, the line is the fit to the product of a
sinusoidal and an exponential function.
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tually the data in Fig. 12 are not sufficient to decide between
exponential and power decay.d This point is discussed further
in Appendix B.

On the other hand, the autocorrelation functionCy shows
a different behavior fromCx. This comes from the specific
shape of the system and the boundary conditions. As shown
in Fig. 11, the damping of the momentum autocorrelation
functionCy is much slower than forCx. This is explained by
the fact that in this quasi-one-dimensional system, a collision
where the vector separation between particle centers points
purely in they direction seither positive or negatived cannot
occur, because the periodic images of the particle prevent
other particles approaching in this direction. This preferential
collision geometry leads to a preference for a larger change
in the x component of momentum at collisions than they
component of momentum, and hence a faster decay of theCx
correlation function. In the inset to Fig. 11, the graph of the
autocorrelation function for theCy is fitted to the
“k-exponential function”Fkstd, which is defined by

Fkstd ; fÎ1 + sa9ktd2 − a9ktg1/k, s18d

with a9ktù0 and fitting parametersa9 and k. In the
collision number region shown in Fig. 11, the autocorrela-
tion function Cy is positive, so this fitting can be forCy as
well as for uCyu. From the definition, in the limit ask=0
the function Fkstd becomes the exponential function:
limk→0 Fkstd=exph−a9tj, noting Fks0d=1 and ]Fkstd /]t=
−a9Fkstd /Î1+sa9ktd2, so this function is a one-parameter
deformation of the exponential functionf45g. The important
properties of this function are that it is approximated by an
exponential function at smalla9kt and is approximately a
power function at largea9kt fby direct expansion of Eq.
s18dg,

Fkstd , He−a9t in a9kt ! 1

s2ka9td−1/k in a9kt @ 1.
J s19d

Fitting the numerical data for the autocorrelation functionCy
to the k-exponential functionFksntd with parameter values
a9<0.00 358 andk<1.44 is very satisfactory, and this im-
plies that this autocorrelation function decays exponentially
initially slike Cxd, and decays as a power function after that,
at least in the time scale shown in Fig. 11.sThis does not
mean that the autocorrelation functionCy decays as a
k-exponential function in any time scale. See Appendix B
aboutCy at much longer time scales than shown in Fig. 11.d

B. Particle number dependence of the autocorrelation
function and its relation to the time oscillation

of the Lyapunov modes

We have shown the two kinds of time-oscillation behav-
iors in the quasi-one-dimensional system: one for the
Lyapunov mode and another for the momentum autocorrela-
tion function. Now we show numerical evidence to connect
these two behaviors.

Figure 13 is the graph of the largest time-oscillating pe-

riod T̄Lya of the Lyapunov modes as a function of the time-
oscillating period Tacf of the momentum autocorrelation

functionCx. Here, the time-oscillating periods are calculated
for N=40,50,60, . . . ,100 at constant density, and the time-

oscillating periodsT̄Lya are calculated as the average of the
collision number intervalTLya for time oscillations of the
Lyapunov vector componentskdxj

s2N−3dlt, kdxj
s2N−3d /pxjlt, and

kdyj
s2N−3d /pyjlt in the first two-point step of the Lyapunov

spectra.sAs shown in Sec. III G, these three oscillating pe-
riods TLya of the Lyapunov modes take almost the same val-
ues.d In Fig. 13, we also show the line given by the function

T̄Lya=2Tacf. The numerical data for the time oscillations in
Fig. 13 are nicely fitted to this function, and suggest the
relation

TLya < 2Tacf. s20d

This is the main result of this paper. The result given in Fig.
13 supports the particle numbersNd independence of the re-
lation s20d with a fixed density, but this relation is also inde-
pendent of density changes. The density independence of the
relation s20d comes from the fact that the time-oscillating
periodsTacf and TLya in mean free time unit do not almost
depend on the particle density.

In Table I, we summarize not only the values of the time-

oscillating periodsT̄Lyat and Tacft of the Lyapunov modes
and the momentum autocorrelation function in real time, but
also the data for theN dependences of the damping proper-
ties of the autocorrelation functionsCx andCy. They include
the mean free timet, the exponential damping timest /a8
and t /b8 sfor Cxd and t /a9 sfor Cyd, and the power 1/k of
the damping ofCy at long time. Here, values ofa8, b8, and
Tacf sa9 and kd are derived by fitting the autocorrelation
function Cx sCyd to Eqs.s16d and s17d fEq. s18dg. From this
table it is clear that the exponential damping timest /a8 and
t /a9, and the power 1/k, are almost independent of the par-
ticle numberN. On the other hand, the exponential damping
time t /b8 of the time oscillation of the autocorrelationCx
increases asN increases.sWe have already discussed theN

FIG. 13. The periodT̄Lya sin collision numbersd of the time
oscillation of the Lyapunov mode as a function of the period of time
oscillation of the longitudinal momentum autocorrelation function
Tacf. Data points are obtained from numerical calculation of the
quasi-one-dimensional system withsH,Pd boundary condition for
different numbers of particlesN=40,50,60, . . . ,100 at constant

density. The line is given by the functionT̄Lya=2Tacf.
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dependence of the mean free timet in Sec. III G.d

C. Boundary condition effects

So far, we have concentrated on the quasi-one-
dimensional system with hard-wall boundary conditions in
the x direction and periodic boundary conditions in they
direction, namely, thesH,Pd boundary condition, for techni-
cal convenience in the analysis of the Lyapunov modes. On
the other hand, in Ref.f18g we have already discussed and
compared Lyapunov steps and modes in the different bound-
ary conditions: the purely periodic boundary conditions
sP,Pd, the purely hard-wall boundary conditionssH,Hd, and
periodic boundary conditions in thex direction and hard-wall
boundary conditions in they direction sP,Hd as well as the
boundary conditionsH,Pd. In this section, we carry out a
similar discussion for the momentum autocorrelation func-
tions Cx in these different boundary conditions. Figure 14
contains schematic illustrations of these boundary condi-
tions.

For meaningful comparisons between the different bound-
ary conditions, we use the same massm and radiusR for the
particles, and the same number of particlessN=50d. Using
the set of the lengthssLx,Lyd to define the size of the system
in the x and y directions forsH,Pd boundary conditions, we
use sLx−2R,Lyd for sP,Pd boundary conditions,sLx−2R,Ly

+2Rd for sP,Hd boundary conditions, andsLx,Ly+2Rd for
sH,Hd boundary conditions. This gives the same effective
area for particles to move in each of the four systems. This
also means that the mean free timet in these four types of
boundary conditions will be the samesconcrete numerical
values oft are given in Table IId.

Figure 15 shows the autocorrelation functionsCx for thex
component of the momenta in quasi-one-dimensional sys-
tems consisting of 50 hard disks with boundary conditions
sP,Pd, sP,Hd, sH,Pd, and sH,Hd as functions of the collision
numbernt. Here, Fig. 15sad is the initial part of the autocor-
relation functionsCx, and is given as a linear-log plot to

show their exponential decay as straight lines. In this figure,
the fits to the exponential function Eq.s16d with the fitting
parametera8 are given for the casessP,Pd andsH,Pd and the
casessP,Hd andsH,Hd separately. The dotted line is the fit for
the casessP,Pd and sH,Pd with the fitting parameter values
a8<0.0765, and the broken line is for the casessP,Hd and
sH,Hd with the fitting parameter valuesa8<0.0597. Figure
15sbd is the time-oscillating part ofCx in the four different
boundary conditions. In this figure, each autocorrelation
function is fitted to the functions17d with the fitting param-

TABLE I. Time-oscillating periods and decay rates for the Lyapunov modes and the momentum autocorrelation functions. Here,N is the

number of particles,t is the mean free time, andT̄Lya is the collision number interval given by taking an average of the three collision
number intervalsTLya for the time oscillations of the Lyapunov vector componentskdxjlt, kdxj /pxjlt, andkdyj /pyjlt corresponding to the first
two-point step. The parametera8 is given by fitting the beginning of the longitudinal momentum autocorrelation functionCx as a function
of the collision numbernt to an exponential functionCx=exph−a8ntj. The parametersb8 andTacf are given by fitting the time-oscillating part
of the same functionCx to the functionCx=A exph−b8ntjsinfs2p /Tacfdnt+jg. The parametersa9 andk are given by fitting the transverse
momentum autocorrelation functionCy as a function of the collision numbernt to thek-exponential function in Eq.s18d.

N t

Lyapunov mode

T̄Lyat

Cx Cy

t /a8 t /b8 Tacft t /a9 1/k

40 0.0489 124 0.49 74 63 5.3 0.73

50 0.0380 154 0.48 103 76 5.3 0.72

60 0.0326 197 0.51 156 97 5.4 0.68

70 0.0275 223 0.49 196 108 5.3 0.61

80 0.0238 257 0.49 205 125 4.7 0.58

90 0.0210 283 0.49 252 140 4.9 0.62

100 0.0188 306 0.49 363 156 5.3 0.69

FIG. 14. Schematic illustrations of the four boundary conditions
sP,Pd, sP,Hd, sH,Pd, and sH,Hd used in quasi-one-dimensional sys-
tems. Here,sP,Pd is the purely periodic boundary conditions,sP,Hd
is periodic boundary conditions in thex direction and hard-wall
boundary conditions in they direction,sH,Pd is hard-wall boundary
conditions in thex direction and periodic boundary conditions in
the y direction, andsH,Hd is the purely hard-wall boundary condi-
tions. The dashed lines and the solid lines on the boundaries repre-
sent periodic boundary conditions and hard-wall boundary condi-
tions, respectively.
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etersA, b8, Tacf, and j. The values of these fitting param-
eters are sA ,b8 ,Tacf,jd<s0.0422,0.001 08,1.00
3103,1.37d for sP,Pd, sA ,b8 ,Tacf,jd
<s0.0447,0.000 803,1.243103,1.33d for sP,Hd,
sA ,b8 ,Tacf,jd<s0.0398,0.000 369,2.043103,1.56d for
sH,Pd, and sA ,b8 ,Tacf,jd<s0.0403,0.000 246,2.53
3103,1.56d for sH,Hd.

Figure 15sad shows that the boundary condition in they
direction has a strong effect on the autocorrelation function
Cx even at short time. In the casessP,Pd andsH,Pd, the auto-
correlation functionCx shows faster exponential decay than
for sP,Hd and sH,Hd, as shown in the difference of the value
of the fitting parametera8 for the exponential fitting function
Eq. s16d. In the collision number region shown in Fig. 15sad,
the effects of the boundary conditions in thex direction in
the autocorrelation functionCx appear after showing their
initial exponential decays, and the autocorrelation function
Cx for sP,Pd fandsP,Hdg decays faster thanCx for sH,Pd fand
sH,Hdg.

On the other hand, Fig. 15sbd shows that in all the bound-
ary conditions, the autocorrelation functionsCx show time
oscillations, but with different oscillating periodsTacf. In this
figure we can recognize that the second peak ofCx for sP,Pd
coincides with the first peak ofCx for sH,Pd. A similar coin-
cidence appears in the second peak ofCx for sP,Hd and the
first peak ofCx in sH,Hd. Actually, the fitting parameter value
of Tacf for sP,Pd fsP,Hdg is approximately half the value of
Tacf for sH,Pd fsH,Hdg. This can be simply explained by the
fact that when replacing the periodic boundary conditions
with the hard-wall boundary conditions, twice the time is
required for a particle perturbation to come back to the same
position.

Finally, we show the relation between the time-oscillating
periods of the Lyapunov mode and the momentum autocor-
relation function for different boundary conditions. In Table
II, we summarize the mean free timet, the time-oscillating
time periodTacft of the momentum autocorrelation function

Cx, and the time-oscillating time periodT̄Lyat of the largest
Lyapunov mode for the four kinds of boundary conditions

sP,Pd, sP,Hd, sH,Pd, andsH,Hd. Here, the periodT̄Lya is evalu-
ated as the arithmetic average of the collision number inter-
vals TLya for the quantities kdxj

skdlt, kdxj
skd /pxjlt, and

kdyj
skd /pyjlt. The Lyapunov indicesk are chosen from the

Lyapunov exponents in the first Lyapunov step which has
time-oscillating behavior of its Lyapunov modes. Our result
supports the conjecture that the relations20d is satisfied for
all boundary conditionssP,Pd, sP,Hd, sH,Pd, andsH,Hd.

D. An explanation for the relation of time-oscillation periods
of the Lyapunov mode and the momentum

autocorrelation function

As we have shown, the relationTLya=2Tacf fEq. s20dg
between the largest time-oscillating periodTLya of the
Lyapunov modes and the time-oscillating periodTacf of the
momentum autocorrelation function is independent of the
number of particlesN and the boundary conditions. In this

TABLE II. The mean free timet, the time-oscillating time pe-
riod Tacft of the longitudinal momentum autocorrelation function

Cx, and the average of the longest time-oscillating time periodT̄Lyat
of the Lyapunov vector, for the different boundary conditionssP,Pd,
sP,Hd, sH,Pd, and sH,Hd in a quasi-one-dimensional system of 50

hard disks.T̄Lya is the average over three collision number intervals
of TLya. Here, TLya is the average of the time oscillations of the
three componentskdxj

skdlt, kdxj
skd /pxjlt, and kdyj

skd /pyjlt for the first
Lyapunov step which has time-oscillating Lyapunov modesfk
=2N−5 for sP,Pd, k=2N−2 for sP,Hd, k=2N−3 for sH,Pd, and k
=2N−1 for sH,Hdg.

Boundary t Tacft T̄Lyat

sP,Pd 0.0369 37.4 77.0

sP,Hd 0.0371 45.8 91.4

sH,Pd 0.0380 77.3 154.5

sH,Hd 0.0383 96.8 194.5

FIG. 15. sColor onlined Cx as a function of the collision number
nt for each different boundary conditionsP,Pd, sP,Hd, sH,Pd, and
sH,Hd. The systems are quasi-one-dimensional systems consisting
of 50 hard disks. We observesad exponential decay region in the
initial damping of the autocorrelation functionCx as a linear-log
plot. The dotted line and the broken line are the fits for the cases
sP,Pd andsH,Pd and the casessP,Hd andsH,Hd to exponential func-
tions, respectively.sbd Time-oscillating region of the autocorrela-
tion functionsCx as a linear-linear plot. The four graphs of the
autocorrelation functionsCx are fitted to the functionsCx=A exph
−b8ntjsinhs2p /Tacfdnt+jj with the fitting parametersA, b8, Tacf,
andj.
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subsection, we discuss a possible explanation for this rela-
tion, which is a physical argument rather than a strict math-
ematical proof.

First, we consider a momentum componentp̃xstd, like the
x component of the momentum in the quasi-one-dimensional
system, which shows a time-oscillating behavior in its auto-
correlation function with a frequencyvacf,

p̃xstd* p̃xs0d , fstdeivacft, s21d

where we use the notationXstd*Xs0d for the autocorrelation
function for any complex quantityXstd with complex conju-
gateXstd* . Here fstd is the damping envelope of the auto-
correlation functionp̃xstd* p̃xs0d, which can be an exponential
decay,fstd,exph−ãtj, with a positive constantã ssee Ap-
pendix Bd.

Next, we consider the time-dependent Lyapunov mode
with the largest time-oscillating period, and we represent its
momentum proportional and time-oscillating term in the
Lyapunov vector, like thex component of the first terms on
the right-hand sides of Eqs.s2d and s3d, as

dq̃x , c1stdp̃xstdeivLyat s22d

with a frequencyvLya, wherec1std is the envelope function
of the amplitude ofdq̃x, and it may show an exponential
divergence sor contractiond following the corresponding
Lyapunov exponent. Now, we assume that if the quantitydq̃x
oscillates persistently in time, then its autocorrelation func-
tion dq̃xstd*dq̃xs0d should oscillate in time with the same fre-
quencyvLya, namely,

dq̃xstd*dq̃xs0d , c2stdeivLyat s23d

with a new envelope functionc2std.
It follows from Eqs.s21d–s23d that

c2stdeivLyat , c1std*c1s0dp̃xstd* p̃xs0de−ivLyat

, c1std*c1s0dfstdeisvacf−vLyadt,

which immediately leads to

c2std , c1std*c1s0dfstd, s24d

vLya , vacf/2. s25d

The time-oscillating periodsTacf andTLya of the momentum
autocorrelation function and the Lyapunov mode are given
by Tacf,2p / stvacfd andTLya,2p / stvLyad. Using this point
and Eq.s25d, we obtain our Eq.s20d. Note that the above
explanation forTLya=2Tacf is independent of the number of
particlesN and the boundary conditions.

In the above explanation, the assumptions23d is crucial,
so it may be useful to demonstrate this behavior numerically.
Figure 16 shows the autocorrelation functionCLya,x

s2N−3d for the

longitudinal Lyapunov vector componentdxj
s2N−3d normal-

ized by its initial value sabout 0.0203d in a quasi-one-
dimensional system of 50 particles withsH,Pd boundary con-
dition. In the autocorrelation functionCLya,x

s2N−3d, its mean value
is subtracted, and an average over the autocorrelation func-
tions of 11 particles in the middle of the system is taken.
Here, the Lyapunov indexn=2N−3 of the Lyapunov vector

component dxj
snd is chosen so that the corresponding

Lyapunov step is the first two-point step associated with a
time-oscillating Lyapunov mode. In Fig. 16, the numerical
data are fitted to a sinusoidal function multiplied by an ex-
ponential function, namely, the functions17d, with the fitting

parameter valuesA<0.967, b8<1.03310−5, Tacf=T̃acf

<4.123103, andj<1.54. This time-oscillating periodT̃acf
for the autocorrelation function for the longitudinal
Lyapunov vector component coincides almost exactly with
the time-oscillating periodTacf<4.073103 of the corre-
sponding Lyapunov mode. This coincidence of the time-
oscillating periods supports our assumption Eq.s23d f46g.

V. CONCLUSION AND REMARKS

In this paper, we have discussed the relation between the
wavelike structure of Lyapunov vectors and the time-
oscillating behavior of the momentum autocorrelation func-
tions in quasi-one-dimensional many-hard-disk systems. The
quasi-one-dimensional system is a narrow rectangular sys-
tem in which thex components of the particle positions re-
mained in the same order. This system was proposed as a
many-particle system which shows clear stepwise structure
of the Lyapunov spectrumsthe Lyapunov stepsd and wave-
like structure of the associated Lyapunov vectorssthe
Lyapunov modesd. Using this system, we showed that there
are two types of Lyapunov modes in the spatial and momen-
tum components of the Lyapunov vectors corresponding to
the two kinds of steps in the Lyapunov spectrum: one is
stationary in time and the other involves a time oscillation.
Here, the time-oscillating Lyapunov vectors consist of a
simple time-oscillating part plus a momentum proportional
time-oscillating part in the longitudinal components, while
the transverse time-oscillating Lyapunov vectors consist of a
momentum proportional time-oscillating part only. We re-
vealed the phase relation for these time-oscillating Lyapunov
modes. It was shown that the system length divided by the
time-oscillating periodsin real timed of the Lyapunov modes

FIG. 16. sColor onlined The normalized autocorrelation function
CLya,x

s2N−3d for the longitudinal Lyapunov vector componentdxj
s2N−3d as

a function of the collision numbernt for a quasi-one-dimensional
system of 50 particles withsH,Pd boundary condition. The numeri-
cal data are well fitted to a sinusoidal function multiplied by an
exponential function.
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is independent of the number of particles at the same density,
and is of the order of thex component of the thermal veloc-
ity. After discussing these wavelike structures of the
Lyapunov vectors, we connected them to the time oscillation
of the momentum autocorrelation. The time oscillation of the
autocorrelation function appears in the longitudinal compo-
nent of the momentum, and its envelope decays exponen-
tially in time. The main point is that the largest time-
oscillating period of the first time-oscillating Lyapunov
modes is twice as long as the time-oscillating period of the
momentum autocorrelation function. We showed that this re-
lation is independent of the number of particles and the
boundary conditionssconstructed from combinations of pe-
riodic and hard-wall boundary conditionsd. A simple expla-
nation is given for this relation. It was also shown that the
autocorrelation function for the transverse component of the
momentum is nicely fitted to thek-exponential function, im-
plying that it decays exponentially at the beginning and de-
cays as a power after that.

In this paper, we considered mainly a specific boundary
condition for the quasi-one-dimensional system:sH,Pd hard-
wall boundary conditions in the longitudinal direction and
periodic boundary conditions in the transverse direction. The
system with this boundary condition exhibits a much clear
wavelike structure of Lyapunov modes than the purely peri-
odic boundary conditionssP,Pd, which is a big advantage for
quantitative discussions of the Lyapunov modes. Using the
sH,Pd boundary condition, the spatial translational invariance
in the longitudinal direction is violated, and it leads to a
different Lyapunov step structure and autocorrelation func-
tions, compared with thesP,Pd boundary conditions. For ex-
ample, in sH,Pd the step widths of the Lyapunov spectrum
are half of the ones insP,Pd, and individual particles can have
different momentum autocorrelation functions due to the
backscattering effect of the hard wallssee Sec. IV Cd while
the momentum autocorrelation function is particle-
independent for thesP,Pd boundary condition. However, as
discussed in Ref.f18g for the Lyapunov modes and in Sec.
IV C for the autocorrelation functions, there is a simple re-
lation connecting the results obtained from different bound-
ary conditions, so we can predict some of the results of the
other boundary conditions from the results forsH,Pd.

The mode structure of Lyapunov vectors discussed in this
paper is related to the structure of the Lyapunov vectors as-
sociated with zero-Lyapunov exponents. As explained in the
Introduction, there are sets of Lyapunov vector components
which take a constant value independent of the particle in-
dex, and these quantities corresponding to the stepwise struc-
ture of the Lyapunov spectrum have wavelike structures.
These are connected with the spatial and time translational
invariances and the energy and momentum conservation
laws. The results obtained here should generalize to two- and
three-dimensional systems with the appropriate changes to
the allowedk vectors. However, we need to be careful when
making a connection between the conservation lawssor the
translation invariancesd and the Lyapunov modes. For ex-
ample, in a system with hard-wall boundary conditions, the
spatial translational invariance is violated, but even in such
systems the mode structure in the Lyapunov vector compo-
nent dxj

snd sor dyj
sndd can be observed. However, a scenario

which suggests that translational invariance is only evident
when it is observed in the zero-Lyapunov exponent modes
will not predict these observed longitudinal modes.

It should be noted that a time dependence of the
Lyapunov modes may not always appear as a time-
oscillating behavior. Referencef19g claims that the spatial
wave of the Lyapunov vector “moves” at a specific speed in
the square system consisting of many hard disks. It is inter-
esting to know how these different behaviors, one oscillating
in time and another moving with a speed, can appear.

In some papers, an understanding of the Lyapunov modes
was attempted based on an analogy with the hydrodynamic
modesf19g. Actually, in both cases the conservation laws
like the total momentum conservation and the energy conser-
vation play an essential role, and the longitudinal mode
shows a time-dependent behavior. However, it is important
to know that the deterministic nature of orbits also plays one
of the essential roles in the Lyapunov modes and leads to
momentum-proportional time-oscillating components of
Lyapunov vectors, although such a characteristic does not
appear explicitly in the hydrodynamic mode. In this sense, it
is still an open question to see how hydrodynamic modes,
which have no concept of a phase-space trajectory, can in-
corporate time translational invariance.

From results of this paper, it is suggested that there is a
connection between the existence of the stepwise structure of
Lyapunov spectra and the time oscillations of momentum
autocorrelation functions. It is well known that the stepwise
structure of the Lyapunov spectra appears clearly in rectan-
gular systems rather than in square systems at the same den-
sity. Is it possible to get a similar result for the time oscilla-
tion of the momentum autocorrelation function? For
example, in a square system with a small number of hard
disks we cannot observe the stepwise structure of the
Lyapunov spectrum, and in this case the time oscillation of
the momentum autocorrelation function does not appear.
Therefore, the time oscillations of the autocorrelation func-
tion may be useful to understand the condition for the exis-
tence of the Lyapunov steps and modes. In this sense, for
example, it may be interesting to investigate the time-
correlation function in systems with soft-core particle inter-
actions in which the observation of the Lyapunov steps is
much harder, and less direct than in systems with hard-core
interactions.
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APPENDIX A: MOMENTUM AUTOCORRELATION
FUNCTION OF INDIVIDUAL PARTICLE

In this appendix, we discuss the momentum autocorrela-
tion function of individual particles in the quasi-one-
dimensional system withsH,Pd boundary conditions. Differ-
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ent from the sP,Pd boundary conditions, the hard-wall
boundary insH,Pd violates the translation invariance in thex
direction, and this implies that different particles can have
different momentum autocorrelation functions.

We introduce the autocorrelation functionch
s jdstd of the j th

particle in theh direction at timet sh=x,yd based on the
normalized expressionch

s jdstd; c̃h
s jdstd / c̃h

s jds0d with c̃h
s jdstd de-

fined by

c̃h
s jdstd ; lim

T→+`

1

T
E

0

T

dspkjss+ tdpkjssd. sA1d

Using this quantityc̃h
s jdstd, the autocorrelation functionC̃hstd

defined by Eq.s15d is simply given byC̃hstd=f1/sN2−N1

+1dgo j=N1

N2 c̃h
s jdstd. In this appendix, we show graphs ofch

s jd as a
function of the collision numbernt< t /t in the quasi-one-
dimensional system of 100 hard disks. We number the par-
ticles1,2, . . . ,N from the left to right, as shown in Fig. 1, so,
for example, the first andNth particles are closest to the hard
walls.

The first important point about the individual autocorrela-
tion functions is that the time oscillation in thex direction is
weak for particles near the walls. This is shown in Fig. 17,
wherecx

s1d is for the particle nearest to the left hard wall,cx
s50d

is the particle most distant from the hard walls, andcx
s20d is a

particle between these two extremes. In Fig. 17, the main
figure is the full data for these autocorrelation functions, and
its inset is an enlarged graph to emphasize the time-
oscillating part. This figure shows that we cannot recognize a
time-oscillating behavior incx

s1d, the particle nearest to the
hard wall, although a clear time oscillation can be recognized
in cx

s50d, the particle in the middle of the system. We can see
a time-oscillating behavior incx

s20d, but its amplitude is
smaller than that ofcx

s50d. The positions of the nodes of the

time oscillations ofcx
s20d andcx

s50d almost coincide with each
other.

Another difference between individual particle autocorre-
lation functions appears at short time. Figure 18 showsch

s jd,
j =1, 2, and 50, as functions of the collision numbernt show-
ing the initial damping behaviorsh=x,yd. These autocorre-
lation functions show an exponential decay, which we
present as a linear-log plotsstraight lines imply exponential
decayd. This figure shows that thex componentsy compo-
nentd of the autocorrelation function of the particle nearest
the hard wall decays fastersslowerd than those of other par-
ticles, while the damping behavior is always nicely fitted to
an exponential function.fIn Fig. 18, the graphs are fitted to
the exponential functions16d with the fitting parameter val-
uesa8<0.0457 forcx

s1d ssolid lined, a8<0.0369 forcx
s2d and

cx
s50d sdotted-broken lined, a8<0.001 84 for cy

s1d sbroken
lined, anda8<0.003 68 forcy

s2d andcy
s50d sdotted lined.g This

difference may come from the different types of collisions
experienced. For the particle nearest the wall, half of the
collisions will be with the wall and the other half with the
neighboring particle. Thex component of the momentum is
drastically changedsnamely, it changes the sign ofpxjd, so it
may cause a faster decay of the autocorrelation function in
the x direction. On the other hand, collisions with the wall
effect they component of the momentum much less, because
it is invariant under wall collisions, and does not cause a loss
of memory inpyj, leading to a slower decay of the autocor-
relation for the firstsandNthd particle in they direction.

Another point of difference in the autocorrelation func-
tions of individual particles is a negative region which ap-
pears after their initial exponential decay. It may be mean-
ingful to mention that a negative region of momentum
autocorrelation function has drawn attention previously
f47–49g. To discuss such a negative region, in Fig. 19 we
show the collision numbernt dependence of the autocorrela-

FIG. 17. sColor onlined Autocorrelation functions forcx
s1d, cx

s20d,
and cx

s50d for the x components of momenta of the 1st, 20th, and
50th particle, respectively, as functions of the collision numbernt.
The system is a quasi-one-dimensional system withN=100 and
sH,Pd boundary condition. The inset: enlarged graphs in the small-
magnitude part of the autocorrelation functions.

FIG. 18. Exponential decay region of the autocorrelation func-
tionscx

s1d scirclesd, cx
s2d strianglesd, andcx

s50d ssquaresd as functions of
the collision numbernt on a linear-log plot. The solid linesthe
dotted-broken linesd is a fit of the graph ofcx

s1d sthe graphs ofcx
s2d

and cx
s50dd to an exponential function. Similar graphs are given for

the autocorrelation functionscy
s1d sinverted trianglesd, cy

s2d splusesd,
andcy

s50d scrossesd. The broken linesthe dotted lined is a fit of the
graph ofcy

s1d sthe graphs ofcy
s2d andcy

s50dd to an exponential function.
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tion functionscx
s1d, cx

s3d, cx
s5d, andcx

s10d. To emphasize the nega-
tive region of the autocorrelation function, we show a log-
log plot of the absolute values of the same quantities as
functions ofnt in the inset to Fig. 20. In this figure, a nega-
tive region of the autocorrelation functions appears after the
initial exponential decay and before the time oscillations ap-
pear. The collision numbersor timed at the bottom of this
negative region of the autocorrelation function increases, and
the amplitude of the bottom decreases, as the particle is far-
ther from the hard-wallsnamely, as the particle indexj in cx

s jd

increases fromj =1 to 10 in Fig. 20d. This phenomenon can
be explained by the backscattering effect of the hard walls.
Such a backscattering effect is strongersso the amplitude of
the negative region is strongerd in a particle closer to a hard
wall. As well the time interval to react to the presence of the
wall is longer sso the time at the bottom of the negative
region is laterd in a particle far from the hard wall. This kind
of behavior is not observed in a system in which the bound-
ary conditions in thex direction are periodic.

After the negative region, the time-oscillating part ap-
pears. Figure 20 shows the collision numbernt dependence
of the autocorrelation functions forcx

s10d, cx
s20d, cx

s35d, andcx
s50d

in the collision number region before the time-oscillation

start saboutnt<6000 in Fig. 20d. The negative peak of the
autocorrelation functionsdiscussed in the previous paragraph
and indicated by the arrows in Fig. 20d moves to larger col-
lision numbernt as the particle indexj increases fromj
=10 to 35 in Fig. 20. On the other hand, the time oscillation
of the autocorrelation function starts from aboutnt<6000,
which is independent of the particle index, although the am-
plitude of the time oscillation is largest for a particle far from
the hard walls. Moreover, the time-oscillating period of the
autocorrelation function is almost independent of the particle
index. These characteristics of the time oscillation of the
autocorrelation function suggest that the time-oscillating be-
havior of the autocorrelation function reflects a collective
movement of the system.FIG. 19. sColor onlined The negative region of autocorrelation

functionscx
s1d, cx

s3d, cx
s5d, andcx

s10d, as functions of the collision num-
bernt as a linear-linear plot. The inset: absolute values of the same
autocorrelation functions as functions ofnt as a log-log plot.

FIG. 20. sColor onlined The region before the start of the time
oscillation of autocorrelation functions forcx

s10d, cx
s20d, cx

s35d, andcx
s50d

as functions of the collision numbernt.

FIG. 21. sColor onlined sad Absolute valuesuCxu and uCyu as
functions of the collision numbernt presented as a log-log plot. The
solid line is a fit of the envelope of the time-oscillating part ofCx to
an exponential function. The dotted line is a fit ofCy to a
k-exponential functionfEq. s18dg and the dotted broken line is a fit
to an exponential function in the region where there is a deviation
from thek-exponential function.sbd The time-oscillating part of the
autocorrelation part as a graph of the absolute valueuCxu as a func-
tion of the collision numbernt presented as a linear-log plot. The
broken line is a fit to a sinusoidal function multiplied by an expo-
nential decay functionfEq. s17dg, and the solid line is its envelope,
which is the same as the solid line insad. The system is a quasi-
one-dimensional system of 50 hard disks withsH,Pd boundary
conditions.
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APPENDIX B: DAMPING BEHAVIOR OF MOMENTUM
AUTOCORRELATION FUNCTION IN A LONG

TIME INTERVAL

In this appendix, we discuss two points about the momen-
tum autocorrelation function in the long time interval:sid The
shape of the envelope of the time oscillation inCx, and sii d
The behavior of the autocorrelation functionCy on a much
longer time scale than that shown previously.

Figure 21 shows the absolute values of the autocorrelation
functionsuCxu anduCyu as functions of the collision numbernt
in a quasi-one-dimensional system of 50 hard disks with
sH,Pd boundary conditions. In Fig. 21sad, these graphs are
plotted as log-log plots, while in Fig. 21sbd the graph foruCxu
is plotted as a linear-log plot. The collision number interval
in this figure is about ten times as long as the previous ones,
and we took a much longer time averagese.g., over 109

collisionsd.
As shown in Sec. IV A,Cx decays exponentially initially.

After the initial decay, the time-oscillating region ofCx
starts. We fitted this region ofCx to a sinusoidal function

multiplied by an exponential function, namely, Eq.s17d, with
the fitting parametersA<0.0402, b8<0.000 368, Tacf
<2.033103, andj<1.53 as the broken lines in Fig. 21sbd.
The solid lines in Figs. 21sad and 21sbd are the envelope
Cx=A exph−b8ntj of this function. In order to see its expo-
nential behavior, we show in Fig. 21sbd the linear-log plot of
uCxu for the time-oscillating region ofCx, in which the expo-
nential decay is represented as a straight line. In this linear-
log plot, the local maximum points ofuCxu are clearly on a
straight line.

In Sec. IV A we also showed thatCy is nicely fitted to a
k-exponential functions18d. This is also shown in Fig. 21sad
as the fit line to thek-exponential function with fitting pa-
rameter valuesa9<0.007 46 andk<1.48 sdotted lined.
However, Fig. 21sad shows that there is a deviation from this
functional form on a longer time scale. Such a deviation is
significant whennt.10 000 in this graph. We fittedCy to an
exponential functionCy=A8 exph−a-ntj with fitting param-
eter valuesA8<0.0369 anda-<6.25310−5 fthe dotted-
broken line in Fig. 21sadg in the region whereCy deviates
from thek exponential.
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